Optimal. Leaf size=22 \[ \frac {\log \left (x+\frac {x \log (-3-x-\log (x))}{e^5}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+x+e^5 (3+x)+e^5 \log (x)+(3+x+\log (x)) \log (-3-x-\log (x))+\left (e^5 (-6-2 x)-2 e^5 \log (x)+(-6-2 x-2 \log (x)) \log (-3-x-\log (x))\right ) \log \left (\frac {e^5 x+x \log (-3-x-\log (x))}{e^5}\right )}{e^5 \left (3 x^3+x^4\right )+e^5 x^3 \log (x)+\left (3 x^3+x^4+x^3 \log (x)\right ) \log (-3-x-\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+x+e^5 (3+x)+e^5 \log (x)+(3+x+\log (x)) \log (-3-x-\log (x))-2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right ) \log \left (x+\frac {x \log (-3-x-\log (x))}{e^5}\right )}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx\\ &=\int \left (\frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {e^5 (3+x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {e^5 \log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {\log (-3-x-\log (x))}{x^3 \left (e^5+\log (-3-x-\log (x))\right )}-\frac {2 \log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^3} \, dx\right )+e^5 \int \frac {3+x}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {\log (-3-x-\log (x))}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx\\ &=\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}+2 \int -\frac {1+\frac {1+x}{(3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}}{2 x^3} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \left (\frac {3}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}\right ) \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \left (\frac {1}{x^3}-\frac {e^5}{x^3 \left (e^5+\log (-3-x-\log (x))\right )}\right ) \, dx\\ &=-\frac {1}{2 x^2}+\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}-e^5 \int \frac {1}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\left (3 e^5\right ) \int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx-\int \frac {1+\frac {1+x}{(3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}}{x^3} \, dx\\ &=-\frac {1}{2 x^2}+\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}-e^5 \int \frac {1}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\left (3 e^5\right ) \int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx-\int \left (\frac {1}{x^3}+\frac {1+x}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}\right ) \, dx\\ &=\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}-e^5 \int \frac {1}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\left (3 e^5\right ) \int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx-\int \frac {1+x}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx\\ &=\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}-e^5 \int \frac {1}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\left (3 e^5\right ) \int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx-\int \left (\frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}+\frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )}\right ) \, dx\\ &=\frac {\log \left (\frac {x \left (e^5+\log (-3-x-\log (x))\right )}{e^5}\right )}{x^2}-e^5 \int \frac {1}{x^3 \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {1}{x^2 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+e^5 \int \frac {\log (x)}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx+\left (3 e^5\right ) \int \frac {1}{x^3 (3+x+\log (x)) \left (e^5+\log (-3-x-\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log \left (x+\frac {x \log (-3-x-\log (x))}{e^5}\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.14 \begin {gather*} \frac {\log \left ({\left (x e^{5} + x \log \left (-x - \log \relax (x) - 3\right )\right )} e^{\left (-5\right )}\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log \relax (x) + \log \left (e^{5} + \log \left (-x - \log \relax (x) - 3\right )\right ) - 5}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 169, normalized size = 7.68
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )}{x^{2}}+\frac {-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right )^{2}-10-i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{5}+\ln \left (-\ln \relax (x )-3-x \right )\right )\right )^{3}+2 \ln \relax (x )}{2 x^{2}}\) | \(169\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log \relax (x) + \log \left (e^{5} + \log \left (-x - \log \relax (x) - 3\right )\right ) - 5}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.70, size = 22, normalized size = 1.00 \begin {gather*} \frac {\ln \left (x\,\left ({\mathrm {e}}^5+\ln \left (-x-\ln \relax (x)-3\right )\right )\right )-5}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.73, size = 24, normalized size = 1.09 \begin {gather*} \frac {\log {\left (\frac {x \log {\left (- x - \log {\relax (x )} - 3 \right )} + x e^{5}}{e^{5}} \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________