Optimal. Leaf size=24 \[ \frac {6 (1-x)^2}{\frac {2}{5}-e^{e^{2 x}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-120+120 x+e^{e^{2 x}} \left (300-300 x+e^{2 x} \left (300-600 x+300 x^2\right )\right )}{4-20 e^{e^{2 x}}+25 e^{2 e^{2 x}}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-120+120 x+e^{e^{2 x}} \left (300-300 x+e^{2 x} \left (300-600 x+300 x^2\right )\right )}{\left (2-5 e^{e^{2 x}}\right )^2} \, dx\\ &=\int \left (-\frac {120}{\left (-2+5 e^{e^{2 x}}\right )^2}+\frac {300 e^{e^{2 x}}}{\left (-2+5 e^{e^{2 x}}\right )^2}+\frac {300 e^{e^{2 x}+2 x} (-1+x)^2}{\left (-2+5 e^{e^{2 x}}\right )^2}+\frac {120 x}{\left (-2+5 e^{e^{2 x}}\right )^2}-\frac {300 e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2}\right ) \, dx\\ &=-\left (120 \int \frac {1}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}}}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x} (-1+x)^2}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\\ &=-\left (60 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+150 \operatorname {Subst}\left (\int \frac {e^x}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \left (\frac {e^{e^{2 x}+2 x}}{\left (-2+5 e^{e^{2 x}}\right )^2}-\frac {2 e^{e^{2 x}+2 x} x}{\left (-2+5 e^{e^{2 x}}\right )^2}+\frac {e^{e^{2 x}+2 x} x^2}{\left (-2+5 e^{e^{2 x}}\right )^2}\right ) \, dx\\ &=\frac {30 e^{-2 x}}{2-5 e^{e^{2 x}}}-30 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right ) x^2} \, dx,x,e^{2 x}\right )-60 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x}}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x} x^2}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-600 \int \frac {e^{e^{2 x}+2 x} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\\ &=\frac {30 e^{-2 x}}{2-5 e^{e^{2 x}}}-30 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right ) x^2} \, dx,x,e^{2 x}\right )-60 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+150 \operatorname {Subst}\left (\int \frac {e^x}{\left (-2+5 e^x\right )^2} \, dx,x,e^{2 x}\right )-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x} x^2}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-600 \int \frac {e^{e^{2 x}+2 x} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\\ &=\frac {30 e^{-2 x}}{2-5 e^{e^{2 x}}}-30 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right ) x^2} \, dx,x,e^{2 x}\right )-60 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+150 \operatorname {Subst}\left (\int \frac {1}{(-2+5 x)^2} \, dx,x,e^{e^{2 x}}\right )-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x} x^2}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-600 \int \frac {e^{e^{2 x}+2 x} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\\ &=\frac {30}{2-5 e^{e^{2 x}}}+\frac {30 e^{-2 x}}{2-5 e^{e^{2 x}}}-30 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right ) x^2} \, dx,x,e^{2 x}\right )-60 \operatorname {Subst}\left (\int \frac {1}{\left (-2+5 e^x\right )^2 x} \, dx,x,e^{2 x}\right )+120 \int \frac {x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-300 \int \frac {e^{e^{2 x}} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx+300 \int \frac {e^{e^{2 x}+2 x} x^2}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx-600 \int \frac {e^{e^{2 x}+2 x} x}{\left (-2+5 e^{e^{2 x}}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 20, normalized size = 0.83 \begin {gather*} -\frac {30 (-1+x)^2}{-2+5 e^{e^{2 x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 21, normalized size = 0.88 \begin {gather*} -\frac {30 \, {\left (x^{2} - 2 \, x + 1\right )}}{5 \, e^{\left (e^{\left (2 \, x\right )}\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 21, normalized size = 0.88 \begin {gather*} -\frac {30 \, {\left (x^{2} - 2 \, x + 1\right )}}{5 \, e^{\left (e^{\left (2 \, x\right )}\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.92
method | result | size |
risch | \(-\frac {30 \left (x^{2}-2 x +1\right )}{5 \,{\mathrm e}^{{\mathrm e}^{2 x}}-2}\) | \(22\) |
norman | \(\frac {-75 \,{\mathrm e}^{{\mathrm e}^{2 x}}+60 x -30 x^{2}}{5 \,{\mathrm e}^{{\mathrm e}^{2 x}}-2}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 21, normalized size = 0.88 \begin {gather*} -\frac {30 \, {\left (x^{2} - 2 \, x + 1\right )}}{5 \, e^{\left (e^{\left (2 \, x\right )}\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.43, size = 23, normalized size = 0.96 \begin {gather*} -\frac {30\,x^2-60\,x+30}{5\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.79 \begin {gather*} \frac {- 6 x^{2} + 12 x - 6}{e^{e^{2 x}} - \frac {2}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________