Optimal. Leaf size=27 \[ 3+9 x-e^{5-e^2-e^{-x} x} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (9 e^x x+e^{e^{-x} \left (e^x \left (5-e^2\right )-x+e^x \log \left (x^2\right )\right )} \left (-2 e^x+x-x^2\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (9+e^{5 \left (1-\frac {e^2}{5}\right )-x-e^{-x} x} x \left (-2 e^x+x-x^2\right )\right ) \, dx\\ &=9 x+\int e^{5 \left (1-\frac {e^2}{5}\right )-x-e^{-x} x} x \left (-2 e^x+x-x^2\right ) \, dx\\ &=9 x+\int \exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x \left (-2 e^x+x-x^2\right ) \, dx\\ &=9 x+\int \left (-2 \exp \left (x-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x-\exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) (-1+x) x^2\right ) \, dx\\ &=9 x-2 \int \exp \left (x-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x \, dx-\int \exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) (-1+x) x^2 \, dx\\ &=9 x-2 \int e^{5 \left (1-\frac {e^2}{5}\right )-e^{-x} x} x \, dx-\int \left (-\exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x^2+\exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x^3\right ) \, dx\\ &=9 x-2 \int e^{-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x\right )} x \, dx+\int \exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x^2 \, dx-\int \exp \left (-e^{-x} \left (-5 e^x \left (1-\frac {e^2}{5}\right )+x+e^x x\right )\right ) x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.10, size = 26, normalized size = 0.96 \begin {gather*} 9 x-e^{5-e^2-e^{-x} x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 30, normalized size = 1.11 \begin {gather*} 9 \, x - e^{\left (-{\left ({\left (e^{2} - 5\right )} e^{x} - e^{x} \log \left (x^{2}\right ) + x\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.99, size = 33, normalized size = 1.22 \begin {gather*} -{\left (x^{2} e^{\left (-x e^{\left (-x\right )} - x - e^{2} + 5\right )} - 9 \, x e^{\left (-x\right )}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 44, normalized size = 1.63
method | result | size |
default | \(\left (9 \,{\mathrm e}^{x} x -{\mathrm e}^{x} {\mathrm e}^{\left ({\mathrm e}^{x} \ln \left (x^{2}\right )+\left (5-{\mathrm e}^{2}\right ) {\mathrm e}^{x}-x \right ) {\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) | \(44\) |
norman | \(\left (9 \,{\mathrm e}^{x} x -{\mathrm e}^{x} {\mathrm e}^{\left ({\mathrm e}^{x} \ln \left (x^{2}\right )+\left (5-{\mathrm e}^{2}\right ) {\mathrm e}^{x}-x \right ) {\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) | \(44\) |
risch | \(9 x -{\mathrm e}^{\frac {\left (-i {\mathrm e}^{x} \mathrm {csgn}\left (i x^{2}\right )^{3} \pi +2 i {\mathrm e}^{x} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right ) \pi -i {\mathrm e}^{x} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2} \pi -2 \,{\mathrm e}^{2+x}+4 \,{\mathrm e}^{x} \ln \relax (x )+10 \,{\mathrm e}^{x}-2 x \right ) {\mathrm e}^{-x}}{2}}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 9 \, x - \int {\left (x^{3} e^{5} - x^{2} e^{5} + 2 \, x e^{\left (x + 5\right )}\right )} e^{\left (-x e^{\left (-x\right )} - x - e^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 24, normalized size = 0.89 \begin {gather*} 9\,x-x^2\,{\mathrm {e}}^{-{\mathrm {e}}^2}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 26, normalized size = 0.96 \begin {gather*} 9 x - e^{\left (- x + e^{x} \log {\left (x^{2} \right )} + \left (5 - e^{2}\right ) e^{x}\right ) e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________