Optimal. Leaf size=26 \[ 5 \left (1+\log \left (\frac {e^4}{\log ^2\left (\frac {2 x^3}{x+x \log (\log (5))}\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.62, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {12, 2302, 29} \begin {gather*} -10 \log \left (\log \left (\frac {2 x^2}{1+\log (\log (5))}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2302
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (20 \int \frac {1}{x \log \left (\frac {2 x^2}{1+\log (\log (5))}\right )} \, dx\right )\\ &=-\left (10 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {2 x^2}{1+\log (\log (5))}\right )\right )\right )\\ &=-10 \log \left (\log \left (\frac {2 x^2}{1+\log (\log (5))}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.62 \begin {gather*} -10 \log \left (\log \left (\frac {2 x^2}{1+\log (\log (5))}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 16, normalized size = 0.62 \begin {gather*} -10 \, \log \left (\log \left (\frac {2 \, x^{2}}{\log \left (\log \relax (5)\right ) + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.68, size = 17, normalized size = 0.65 \begin {gather*} -10 \, \log \left ({\left | \log \left (\frac {2 \, x^{2}}{\log \left (\log \relax (5)\right ) + 1}\right ) \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.65
method | result | size |
derivativedivides | \(-10 \ln \left (\ln \left (\frac {2 x^{2}}{\ln \left (\ln \relax (5)\right )+1}\right )\right )\) | \(17\) |
default | \(-10 \ln \left (\ln \left (\frac {2 x^{2}}{\ln \left (\ln \relax (5)\right )+1}\right )\right )\) | \(17\) |
norman | \(-10 \ln \left (\ln \left (\frac {2 x^{2}}{\ln \left (\ln \relax (5)\right )+1}\right )\right )\) | \(17\) |
risch | \(-10 \ln \left (\ln \left (\frac {2 x^{2}}{\ln \left (\ln \relax (5)\right )+1}\right )\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 16, normalized size = 0.62 \begin {gather*} -10 \, \log \left (\log \left (\frac {2 \, x^{2}}{\log \left (\log \relax (5)\right ) + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.25, size = 18, normalized size = 0.69 \begin {gather*} -10\,\ln \left (\ln \left (x^2\right )+\ln \relax (2)-\ln \left (\ln \left (\ln \relax (5)\right )+1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.65 \begin {gather*} - 10 \log {\left (\log {\left (\frac {2 x^{2}}{\log {\left (\log {\relax (5 )} \right )} + 1} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________