Optimal. Leaf size=21 \[ \frac {1}{e^x-e^{-4 \log ^2(x)}-x}+x \]
________________________________________________________________________________________
Rubi [F] time = 11.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+e^{2 x} x+e^{-8 \log ^2(x)} x+x^3+e^x \left (-x-2 x^2\right )+e^{-4 \log ^2(x)} \left (-2 e^x x+2 x^2-8 \log (x)\right )}{e^{2 x} x+e^{-8 \log ^2(x)} x-2 e^x x^2+x^3+e^{-4 \log ^2(x)} \left (-2 e^x x+2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{8 \log ^2(x)} \left (x+e^{2 x} x+e^{-8 \log ^2(x)} x+x^3+e^x \left (-x-2 x^2\right )+e^{-4 \log ^2(x)} \left (-2 e^x x+2 x^2-8 \log (x)\right )\right )}{x \left (1-e^{x+4 \log ^2(x)}+e^{4 \log ^2(x)} x\right )^2} \, dx\\ &=\int \left (1-\frac {8 e^{4 \log ^2(x)} \log (x)}{x}+\frac {8 e^{8 \log ^2(x)} \left (-e^x+x\right ) \log (x)}{x \left (1-e^{x+4 \log ^2(x)}+e^{4 \log ^2(x)} x\right )}-\frac {e^{8 \log ^2(x)} \left (-x+e^x x+8 e^x \log (x)-8 x \log (x)\right )}{x \left (1-e^{x+4 \log ^2(x)}+e^{4 \log ^2(x)} x\right )^2}\right ) \, dx\\ &=x-8 \int \frac {e^{4 \log ^2(x)} \log (x)}{x} \, dx+8 \int \frac {e^{8 \log ^2(x)} \left (-e^x+x\right ) \log (x)}{x \left (1-e^{x+4 \log ^2(x)}+e^{4 \log ^2(x)} x\right )} \, dx-\int \frac {e^{8 \log ^2(x)} \left (-x+e^x x+8 e^x \log (x)-8 x \log (x)\right )}{x \left (1-e^{x+4 \log ^2(x)}+e^{4 \log ^2(x)} x\right )^2} \, dx\\ &=x+8 \int \left (-\frac {e^{8 \log ^2(x)} \log (x)}{-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x}+\frac {e^{x+8 \log ^2(x)} \log (x)}{x \left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )}\right ) \, dx-8 \operatorname {Subst}\left (\int e^{4 x^2} x \, dx,x,\log (x)\right )-\int \left (-\frac {e^{8 \log ^2(x)}}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2}+\frac {e^{x+8 \log ^2(x)}}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2}-\frac {8 e^{8 \log ^2(x)} \log (x)}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2}+\frac {8 e^{x+8 \log ^2(x)} \log (x)}{x \left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2}\right ) \, dx\\ &=-e^{4 \log ^2(x)}+x+8 \int \frac {e^{8 \log ^2(x)} \log (x)}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2} \, dx-8 \int \frac {e^{x+8 \log ^2(x)} \log (x)}{x \left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2} \, dx-8 \int \frac {e^{8 \log ^2(x)} \log (x)}{-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x} \, dx+8 \int \frac {e^{x+8 \log ^2(x)} \log (x)}{x \left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )} \, dx+\int \frac {e^{8 \log ^2(x)}}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2} \, dx-\int \frac {e^{x+8 \log ^2(x)}}{\left (-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 36, normalized size = 1.71 \begin {gather*} x+\frac {e^{4 \log ^2(x)}}{-1+e^{x+4 \log ^2(x)}-e^{4 \log ^2(x)} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 35, normalized size = 1.67 \begin {gather*} \frac {x^{2} + x e^{\left (-4 \, \log \relax (x)^{2}\right )} - x e^{x} - 1}{x + e^{\left (-4 \, \log \relax (x)^{2}\right )} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.52, size = 607, normalized size = 28.90 \begin {gather*} \frac {8 \, x^{4} e^{\left (4 \, \log \relax (x)^{2}\right )} \log \relax (x) + x^{4} e^{\left (4 \, \log \relax (x)^{2}\right )} - x^{4} e^{\left (4 \, \log \relax (x)^{2} + x\right )} - 24 \, x^{3} e^{\left (4 \, \log \relax (x)^{2} + x\right )} \log \relax (x) + 2 \, x^{3} e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} - 2 \, x^{3} e^{\left (4 \, \log \relax (x)^{2} + x\right )} - 2 \, x^{3} e^{x} + 16 \, x^{3} \log \relax (x) - 8 \, x^{2} e^{\left (4 \, \log \relax (x)^{2}\right )} \log \relax (x) + 8 \, x^{2} e^{\left (-4 \, \log \relax (x)^{2}\right )} \log \relax (x) + 24 \, x^{2} e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} \log \relax (x) - 32 \, x^{2} e^{x} \log \relax (x) + 2 \, x^{3} - x^{2} e^{\left (4 \, \log \relax (x)^{2}\right )} + x^{2} e^{\left (-4 \, \log \relax (x)^{2}\right )} - x^{2} e^{\left (4 \, \log \relax (x)^{2} + 3 \, x\right )} + x^{2} e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} + x^{2} e^{\left (4 \, \log \relax (x)^{2} + x\right )} - x^{2} e^{\left (-4 \, \log \relax (x)^{2} + x\right )} + 2 \, x^{2} e^{\left (2 \, x\right )} - 2 \, x^{2} e^{x} - 8 \, x e^{\left (4 \, \log \relax (x)^{2} + 3 \, x\right )} \log \relax (x) + 16 \, x e^{\left (4 \, \log \relax (x)^{2} + x\right )} \log \relax (x) - 8 \, x e^{\left (-4 \, \log \relax (x)^{2} + x\right )} \log \relax (x) + 16 \, x e^{\left (2 \, x\right )} \log \relax (x) - x e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} + x e^{\left (4 \, \log \relax (x)^{2} + x\right )} + x e^{x} - 8 \, x \log \relax (x) - 8 \, e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} \log \relax (x) + 8 \, e^{x} \log \relax (x) - x}{8 \, x^{3} e^{\left (4 \, \log \relax (x)^{2}\right )} \log \relax (x) + x^{3} e^{\left (4 \, \log \relax (x)^{2}\right )} - x^{3} e^{\left (4 \, \log \relax (x)^{2} + x\right )} - 24 \, x^{2} e^{\left (4 \, \log \relax (x)^{2} + x\right )} \log \relax (x) + 2 \, x^{2} e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} - 2 \, x^{2} e^{\left (4 \, \log \relax (x)^{2} + x\right )} - 2 \, x^{2} e^{x} + 16 \, x^{2} \log \relax (x) + 8 \, x e^{\left (-4 \, \log \relax (x)^{2}\right )} \log \relax (x) + 24 \, x e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} \log \relax (x) - 32 \, x e^{x} \log \relax (x) + 2 \, x^{2} + x e^{\left (-4 \, \log \relax (x)^{2}\right )} - x e^{\left (4 \, \log \relax (x)^{2} + 3 \, x\right )} + x e^{\left (4 \, \log \relax (x)^{2} + 2 \, x\right )} - x e^{\left (-4 \, \log \relax (x)^{2} + x\right )} + 2 \, x e^{\left (2 \, x\right )} - 2 \, x e^{x} - 8 \, e^{\left (4 \, \log \relax (x)^{2} + 3 \, x\right )} \log \relax (x) - 8 \, e^{\left (-4 \, \log \relax (x)^{2} + x\right )} \log \relax (x) + 16 \, e^{\left (2 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.95
method | result | size |
risch | \(x -\frac {1}{{\mathrm e}^{-4 \ln \relax (x )^{2}}-{\mathrm e}^{x}+x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 39, normalized size = 1.86 \begin {gather*} \frac {{\left (x^{2} - x e^{x} - 1\right )} e^{\left (4 \, \log \relax (x)^{2}\right )} + x}{{\left (x - e^{x}\right )} e^{\left (4 \, \log \relax (x)^{2}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 19, normalized size = 0.90 \begin {gather*} x-\frac {1}{x+{\mathrm {e}}^{-4\,{\ln \relax (x)}^2}-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 17, normalized size = 0.81 \begin {gather*} x + \frac {1}{- x + e^{x} - e^{- 4 \log {\relax (x )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________