Optimal. Leaf size=26 \[ 9+\log \left (e^{2+\frac {4}{4-2 x-\log (x)}}+\frac {3}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 19.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-48+48 x-12 x^2+e^{\frac {-12+4 x+2 \log (x)}{-4+2 x+\log (x)}} \left (4 x+8 x^2\right )+(24-12 x) \log (x)-3 \log ^2(x)}{48 x-48 x^2+12 x^3+\left (-24 x+12 x^2\right ) \log (x)+3 x \log ^2(x)+e^{\frac {-12+4 x+2 \log (x)}{-4+2 x+\log (x)}} \left (16 x^2-16 x^3+4 x^4+\left (-8 x^2+4 x^3\right ) \log (x)+x^2 \log ^2(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \left (-48+48 x-12 x^2+e^{\frac {-12+4 x+2 \log (x)}{-4+2 x+\log (x)}} \left (4 x+8 x^2\right )+(24-12 x) \log (x)-3 \log ^2(x)\right )}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2} \, dx\\ &=\int \left (\frac {4 \exp \left (\frac {12}{-4+2 x+\log (x)}+\frac {4 (-3+x)}{-4+2 x+\log (x)}\right ) x^{\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2}+\frac {8 \exp \left (\frac {12}{-4+2 x+\log (x)}+\frac {4 (-3+x)}{-4+2 x+\log (x)}\right ) x^{1+\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2}+\frac {48 e^{\frac {12}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}-\frac {48 e^{\frac {12}{-4+2 x+\log (x)}}}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}-\frac {12 e^{\frac {12}{-4+2 x+\log (x)}} x}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}-\frac {12 e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}+\frac {24 e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}-\frac {3 e^{\frac {12}{-4+2 x+\log (x)}} \log ^2(x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log ^2(x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx\right )+4 \int \frac {\exp \left (\frac {12}{-4+2 x+\log (x)}+\frac {4 (-3+x)}{-4+2 x+\log (x)}\right ) x^{\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2} \, dx+8 \int \frac {\exp \left (\frac {12}{-4+2 x+\log (x)}+\frac {4 (-3+x)}{-4+2 x+\log (x)}\right ) x^{1+\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2} \, dx-12 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} x}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx-12 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx+24 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx+48 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx-48 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}}}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx\\ &=-\left (3 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log ^2(x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx\right )+4 \int \frac {e^{\frac {4 x}{-4+2 x+\log (x)}} x^{\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2} \, dx+8 \int \frac {e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (4-2 x-\log (x))^2} \, dx-12 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} x}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx-12 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx+24 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}} \log (x)}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx+48 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}}}{\left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx-48 \int \frac {e^{\frac {12}{-4+2 x+\log (x)}}}{x \left (3 e^{\frac {12}{-4+2 x+\log (x)}}+e^{\frac {4 x}{-4+2 x+\log (x)}} x^{1+\frac {2}{-4+2 x+\log (x)}}\right ) (-4+2 x+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.95, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-48+48 x-12 x^2+e^{\frac {-12+4 x+2 \log (x)}{-4+2 x+\log (x)}} \left (4 x+8 x^2\right )+(24-12 x) \log (x)-3 \log ^2(x)}{48 x-48 x^2+12 x^3+\left (-24 x+12 x^2\right ) \log (x)+3 x \log ^2(x)+e^{\frac {-12+4 x+2 \log (x)}{-4+2 x+\log (x)}} \left (16 x^2-16 x^3+4 x^4+\left (-8 x^2+4 x^3\right ) \log (x)+x^2 \log ^2(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.08 \begin {gather*} \log \left (\frac {x e^{\left (\frac {2 \, {\left (2 \, x + \log \relax (x) - 6\right )}}{2 \, x + \log \relax (x) - 4}\right )} + 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.90, size = 30, normalized size = 1.15 \begin {gather*} \log \left (x e^{\left (-\frac {2 \, x + \log \relax (x)}{2 \, x + \log \relax (x) - 4} + 3\right )} + 3\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 59, normalized size = 2.27
method | result | size |
risch | \(-\frac {4}{\ln \relax (x )+2 x -4}-\frac {2 \ln \relax (x )+4 x -12}{\ln \relax (x )+2 x -4}+\ln \left ({\mathrm e}^{\frac {2 \ln \relax (x )+4 x -12}{\ln \relax (x )+2 x -4}}+\frac {3}{x}\right )\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 92, normalized size = 3.54 \begin {gather*} \frac {4 \, {\left (x - 2\right )}}{2 \, x + \log \relax (x) - 4} + \log \left (\frac {1}{3} \, {\left (x e^{\left (\frac {2 \, \log \relax (x)}{2 \, x + \log \relax (x) - 4} + \frac {8}{2 \, x + \log \relax (x) - 4} + 2\right )} + 3 \, e^{\left (\frac {2 \, \log \relax (x)}{2 \, x + \log \relax (x) - 4} + \frac {12}{2 \, x + \log \relax (x) - 4}\right )}\right )} e^{\left (-\frac {12}{2 \, x + \log \relax (x) - 4}\right )}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.69, size = 46, normalized size = 1.77 \begin {gather*} \ln \left (\frac {3}{x}+x^{\frac {2}{2\,x+\ln \relax (x)-4}}\,{\mathrm {e}}^{-\frac {12}{2\,x+\ln \relax (x)-4}}\,{\mathrm {e}}^{\frac {4\,x}{2\,x+\ln \relax (x)-4}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.20, size = 24, normalized size = 0.92 \begin {gather*} \log {\left (e^{\frac {4 x + 2 \log {\relax (x )} - 12}{2 x + \log {\relax (x )} - 4}} + \frac {3}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________