Optimal. Leaf size=34 \[ -1+2 x+\frac {\left (\frac {3}{x}-x\right ) (-x+\log (4))}{2 x (5+3 x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 39, normalized size of antiderivative = 1.15, number of steps used = 5, number of rules used = 4, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1594, 27, 12, 1620} \begin {gather*} \frac {3 \log (4)}{10 x^2}+2 x+\frac {5+\log (64)}{75 (3 x+5)}-\frac {3 (5+\log (64))}{50 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 x+18 x^2+105 x^3+120 x^4+36 x^5+\left (-30-27 x+3 x^3\right ) \log (4)}{x^3 \left (50+60 x+18 x^2\right )} \, dx\\ &=\int \frac {15 x+18 x^2+105 x^3+120 x^4+36 x^5+\left (-30-27 x+3 x^3\right ) \log (4)}{2 x^3 (5+3 x)^2} \, dx\\ &=\frac {1}{2} \int \frac {15 x+18 x^2+105 x^3+120 x^4+36 x^5+\left (-30-27 x+3 x^3\right ) \log (4)}{x^3 (5+3 x)^2} \, dx\\ &=\frac {1}{2} \int \left (4-\frac {6 \log (4)}{5 x^3}+\frac {3 (5+\log (64))}{25 x^2}-\frac {2 (5+\log (64))}{25 (5+3 x)^2}\right ) \, dx\\ &=2 x+\frac {3 \log (4)}{10 x^2}-\frac {3 (5+\log (64))}{50 x}+\frac {5+\log (64)}{75 (5+3 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 41, normalized size = 1.21 \begin {gather*} \frac {-9 x+60 x^3+36 x^4+9 \log (4)-x^2 (5+\log (64))}{6 x^2 (5+3 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 43, normalized size = 1.26 \begin {gather*} \frac {36 \, x^{4} + 60 \, x^{3} - 5 \, x^{2} - 6 \, {\left (x^{2} - 3\right )} \log \relax (2) - 9 \, x}{6 \, {\left (3 \, x^{3} + 5 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 37, normalized size = 1.09 \begin {gather*} 2 \, x + \frac {6 \, \log \relax (2) + 5}{75 \, {\left (3 \, x + 5\right )}} - \frac {3 \, {\left (6 \, x \log \relax (2) + 5 \, x - 10 \, \log \relax (2)\right )}}{50 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 33, normalized size = 0.97
method | result | size |
risch | \(2 x +\frac {3 \left (-\frac {\ln \relax (2)}{3}-\frac {5}{18}\right ) x^{2}-\frac {3 x}{2}+3 \ln \relax (2)}{x^{2} \left (3 x +5\right )}\) | \(33\) |
norman | \(\frac {\left (-\frac {35}{2}-\ln \relax (2)\right ) x^{2}-\frac {3 x}{2}+6 x^{4}+3 \ln \relax (2)}{x^{2} \left (3 x +5\right )}\) | \(35\) |
gosper | \(-\frac {-12 x^{4}+2 x^{2} \ln \relax (2)+35 x^{2}-6 \ln \relax (2)+3 x}{2 x^{2} \left (3 x +5\right )}\) | \(38\) |
default | \(2 x +\frac {3 \ln \relax (2)}{5 x^{2}}-\frac {3 \left (\frac {6 \ln \relax (2)}{25}+\frac {1}{5}\right )}{2 x}-\frac {3 \left (-\frac {4 \ln \relax (2)}{75}-\frac {2}{45}\right )}{2 \left (3 x +5\right )}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 37, normalized size = 1.09 \begin {gather*} 2 \, x - \frac {x^{2} {\left (6 \, \log \relax (2) + 5\right )} + 9 \, x - 18 \, \log \relax (2)}{6 \, {\left (3 \, x^{3} + 5 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.25, size = 75, normalized size = 2.21 \begin {gather*} 2\,x-\frac {3\,x}{6\,x^3+10\,x^2}-\frac {5\,x^2}{3\,\left (6\,x^3+10\,x^2\right )}+\frac {6\,\ln \relax (2)}{6\,x^3+10\,x^2}-\frac {2\,x^2\,\ln \relax (2)}{6\,x^3+10\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.63, size = 32, normalized size = 0.94 \begin {gather*} 2 x + \frac {x^{2} \left (-5 - 6 \log {\relax (2 )}\right ) - 9 x + 18 \log {\relax (2 )}}{18 x^{3} + 30 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________