Optimal. Leaf size=22 \[ 5 e^{(2+e) x} \left (e^{76 x^2}-\frac {2 x}{3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 28, normalized size of antiderivative = 1.27, number of steps used = 9, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {6, 12, 6741, 6742, 2194, 2176, 2236} \begin {gather*} 5 e^{76 x^2+(2+e) x}-\frac {10}{3} e^{(2+e) x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2176
Rule 2194
Rule 2236
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{3} e^{2 x+e x} \left (-10+(-20-10 e) x+e^{76 x^2} (30+15 e+2280 x)\right ) \, dx\\ &=\frac {1}{3} \int e^{2 x+e x} \left (-10+(-20-10 e) x+e^{76 x^2} (30+15 e+2280 x)\right ) \, dx\\ &=\frac {1}{3} \int e^{(2+e) x} \left (-10+(-20-10 e) x+e^{76 x^2} (30+15 e+2280 x)\right ) \, dx\\ &=\frac {1}{3} \int \left (-10 e^{(2+e) x}-10 e^{(2+e) x} (2+e) x+15 e^{(2+e) x+76 x^2} (2+e+152 x)\right ) \, dx\\ &=-\left (\frac {10}{3} \int e^{(2+e) x} \, dx\right )+5 \int e^{(2+e) x+76 x^2} (2+e+152 x) \, dx-\frac {1}{3} (10 (2+e)) \int e^{(2+e) x} x \, dx\\ &=5 e^{(2+e) x+76 x^2}-\frac {10 e^{(2+e) x}}{3 (2+e)}-\frac {10}{3} e^{(2+e) x} x+\frac {10}{3} \int e^{(2+e) x} \, dx\\ &=5 e^{(2+e) x+76 x^2}-\frac {10}{3} e^{(2+e) x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 1.09 \begin {gather*} \frac {5}{3} e^{(2+e) x} \left (3 e^{76 x^2}-2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 23, normalized size = 1.05 \begin {gather*} -\frac {5}{3} \, {\left (2 \, x - 3 \, e^{\left (76 \, x^{2}\right )}\right )} e^{\left (x e + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 80, normalized size = 3.64 \begin {gather*} -\frac {10 \, {\left (x e + 2 \, x - 1\right )} e^{\left (x e + 2 \, x + 1\right )}}{3 \, {\left (e^{2} + 4 \, e + 4\right )}} - \frac {10 \, {\left (2 \, x e + 4 \, x + e\right )} e^{\left (x e + 2 \, x\right )}}{3 \, {\left (e^{2} + 4 \, e + 4\right )}} + 5 \, e^{\left (76 \, x^{2} + x e + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.00
method | result | size |
risch | \(\frac {\left (-10 x +15 \,{\mathrm e}^{76 x^{2}}\right ) {\mathrm e}^{x \left ({\mathrm e}+2\right )}}{3}\) | \(22\) |
norman | \(-\frac {10 x \,{\mathrm e}^{x \,{\mathrm e}+2 x}}{3}+5 \,{\mathrm e}^{76 x^{2}} {\mathrm e}^{x \,{\mathrm e}+2 x}\) | \(31\) |
default | \(-\frac {10 \,{\mathrm e}^{x \,{\mathrm e}+2 x}}{3 \left ({\mathrm e}+2\right )}-\frac {20 \left ({\mathrm e}^{x \left ({\mathrm e}+2\right )} \left ({\mathrm e}+2\right ) x -{\mathrm e}^{x \left ({\mathrm e}+2\right )}\right )}{3 \left ({\mathrm e}+2\right )^{2}}-\frac {5 i \sqrt {\pi }\, {\mathrm e}^{-\frac {\left ({\mathrm e}+2\right )^{2}}{304}} \sqrt {19}\, \erf \left (2 i \sqrt {19}\, x +\frac {i \left ({\mathrm e}+2\right ) \sqrt {19}}{76}\right )}{38}-\frac {10 \left ({\mathrm e}^{1+x \left ({\mathrm e}+2\right )} \left (1+x \left ({\mathrm e}+2\right )\right )-2 \,{\mathrm e}^{1+x \left ({\mathrm e}+2\right )}\right )}{3 \left ({\mathrm e}+2\right )^{2}}+5 \,{\mathrm e}^{76 x^{2}+x \left ({\mathrm e}+2\right )}+\frac {5 i \left ({\mathrm e}+2\right ) \sqrt {\pi }\, {\mathrm e}^{-\frac {\left ({\mathrm e}+2\right )^{2}}{304}} \sqrt {19}\, \erf \left (2 i \sqrt {19}\, x +\frac {i \left ({\mathrm e}+2\right ) \sqrt {19}}{76}\right )}{76}-\frac {5 i \sqrt {\pi }\, {\mathrm e}^{1-\frac {\left ({\mathrm e}+2\right )^{2}}{304}} \sqrt {19}\, \erf \left (2 i \sqrt {19}\, x +\frac {i \left ({\mathrm e}+2\right ) \sqrt {19}}{76}\right )}{76}\) | \(220\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 239, normalized size = 10.86 \begin {gather*} -\frac {5}{38} i \, \sqrt {19} \sqrt {\pi } \operatorname {erf}\left (2 i \, \sqrt {19} x + \frac {1}{76} i \, \sqrt {19} {\left (e + 2\right )}\right ) e^{\left (-\frac {1}{304} \, {\left (e + 2\right )}^{2}\right )} - \frac {5}{76} i \, \sqrt {19} \sqrt {\pi } \operatorname {erf}\left (2 i \, \sqrt {19} x + \frac {1}{76} i \, \sqrt {19} {\left (e + 2\right )}\right ) e^{\left (-\frac {1}{304} \, {\left (e + 2\right )}^{2} + 1\right )} - \frac {5}{76} \, \sqrt {19} {\left (\frac {\sqrt {19} \sqrt {\frac {1}{19}} \sqrt {\pi } {\left (152 \, x + e + 2\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {\frac {1}{19}} \sqrt {-{\left (152 \, x + e + 2\right )}^{2}}\right ) - 1\right )} {\left (e + 2\right )}}{\sqrt {-{\left (152 \, x + e + 2\right )}^{2}}} - 4 \, \sqrt {19} e^{\left (\frac {1}{304} \, {\left (152 \, x + e + 2\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{304} \, {\left (e + 2\right )}^{2}\right )} - \frac {10 \, {\left (x {\left (e^{2} + 2 \, e\right )} - e\right )} e^{\left (x e + 2 \, x\right )}}{3 \, {\left (e^{2} + 4 \, e + 4\right )}} - \frac {20 \, {\left (x {\left (e + 2\right )} - 1\right )} e^{\left (x e + 2 \, x\right )}}{3 \, {\left (e^{2} + 4 \, e + 4\right )}} - \frac {10 \, e^{\left (x e + 2 \, x\right )}}{3 \, {\left (e + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 23, normalized size = 1.05 \begin {gather*} -{\mathrm {e}}^{2\,x+x\,\mathrm {e}}\,\left (\frac {10\,x}{3}-5\,{\mathrm {e}}^{76\,x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.07, size = 22, normalized size = 1.00 \begin {gather*} \frac {\left (- 10 x + 15 e^{76 x^{2}}\right ) e^{2 x + e x}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________