Optimal. Leaf size=23 \[ \log \left ((-x+\log (x))^2 \log ^4\left (\log \left (e^x+x^2+\log (x)\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-4 e^x x^2-8 x^3+\left (4+4 e^x x+8 x^2\right ) \log (x)+\left (e^x (2-2 x)+2 x^2-2 x^3+(2-2 x) \log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}{\left (-e^x x^2-x^4+\left (e^x x-x^2+x^3\right ) \log (x)+x \log ^2(x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+4 e^x x^2+8 x^3-\left (4+4 e^x x+8 x^2\right ) \log (x)-\left (e^x (2-2 x)+2 x^2-2 x^3+(2-2 x) \log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}{x (x-\log (x)) \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx\\ &=\int \left (-\frac {4 \left (-1-2 x^2+x^3+x \log (x)\right )}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}+\frac {2 \left (2 x^2-2 x \log (x)-\log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )+x \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )\right )}{x (x-\log (x)) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}\right ) \, dx\\ &=2 \int \frac {2 x^2-2 x \log (x)-\log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )+x \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}{x (x-\log (x)) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {-1-2 x^2+x^3+x \log (x)}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx\\ &=2 \int \frac {2 x^2-2 x \log (x)+(-1+x) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}{x (x-\log (x)) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \left (-\frac {1}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}-\frac {2 x}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}+\frac {x^2}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}+\frac {\log (x)}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}\right ) \, dx\\ &=2 \int \left (\frac {-1+x}{x (x-\log (x))}+\frac {2}{\log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )}\right ) \, dx+4 \int \frac {1}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {x^2}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {\log (x)}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx+8 \int \frac {x}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx\\ &=2 \int \frac {-1+x}{x (x-\log (x))} \, dx+4 \int \frac {1}{\log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx+4 \int \frac {1}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {x^2}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {\log (x)}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx+8 \int \frac {x}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx\\ &=2 \log (x-\log (x))+4 \int \frac {1}{\log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx+4 \int \frac {1}{x \left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {x^2}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx-4 \int \frac {\log (x)}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx+8 \int \frac {x}{\left (e^x+x^2+\log (x)\right ) \log \left (e^x+x^2+\log (x)\right ) \log \left (\log \left (e^x+x^2+\log (x)\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 24, normalized size = 1.04 \begin {gather*} 2 \log (x-\log (x))+4 \log \left (\log \left (\log \left (e^x+x^2+\log (x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 23, normalized size = 1.00 \begin {gather*} 2 \, \log \left (-x + \log \relax (x)\right ) + 4 \, \log \left (\log \left (\log \left (x^{2} + e^{x} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 23, normalized size = 1.00 \begin {gather*} 2 \, \log \left (-x + \log \relax (x)\right ) + 4 \, \log \left (\log \left (\log \left (x^{2} + e^{x} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.04
method | result | size |
risch | \(2 \ln \left (\ln \relax (x )-x \right )+4 \ln \left (\ln \left (\ln \left (\ln \relax (x )+x^{2}+{\mathrm e}^{x}\right )\right )\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 23, normalized size = 1.00 \begin {gather*} 2 \, \log \left (-x + \log \relax (x)\right ) + 4 \, \log \left (\log \left (\log \left (x^{2} + e^{x} + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.71, size = 23, normalized size = 1.00 \begin {gather*} 4\,\ln \left (\ln \left (\ln \left ({\mathrm {e}}^x+\ln \relax (x)+x^2\right )\right )\right )+2\,\ln \left (\ln \relax (x)-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________