Optimal. Leaf size=19 \[ e^{x+\frac {1}{2 x^2 (-1+\log (16))}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.60, antiderivative size = 83, normalized size of antiderivative = 4.37, number of steps used = 4, number of rules used = 4, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {6, 12, 6741, 2288} \begin {gather*} \frac {\left (x^3 (1-\log (16))+1\right ) \exp \left (-\frac {1-2 x^3 (1-\log (16))}{2 x^2 (1-\log (16))}\right )}{x^2 (1-\log (16)) \left (\frac {1-2 x^3 (1-\log (16))}{x^3 (1-\log (16))}+3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1-2 x^3+2 x^3 \log (16)}{-2 x^2+2 x^2 \log (16)}\right ) \left (-1-x^2-x^3+\left (x^2+x^3\right ) \log (16)\right )}{x^2 (-1+\log (16))} \, dx\\ &=\frac {\int \frac {\exp \left (\frac {1-2 x^3+2 x^3 \log (16)}{-2 x^2+2 x^2 \log (16)}\right ) \left (-1-x^2-x^3+\left (x^2+x^3\right ) \log (16)\right )}{x^2} \, dx}{-1+\log (16)}\\ &=\frac {\int \frac {\exp \left (-\frac {1-2 x^3 (1-\log (16))}{2 x^2 (1-\log (16))}\right ) \left (-1-x^2 (1-\log (16))-x^3 (1-\log (16))\right )}{x^2} \, dx}{-1+\log (16)}\\ &=\frac {\exp \left (-\frac {1-2 x^3 (1-\log (16))}{2 x^2 (1-\log (16))}\right ) \left (1+x^3 (1-\log (16))\right )}{x^2 \left (3+\frac {1-2 x^3 (1-\log (16))}{x^3 (1-\log (16))}\right ) (1-\log (16))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 34, normalized size = 1.79 \begin {gather*} 16^{\frac {x}{-1+\log (16)}} e^{\frac {1-2 x^3}{2 x^2 (-1+\log (16))}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 34, normalized size = 1.79 \begin {gather*} x e^{\left (\frac {8 \, x^{3} \log \relax (2) - 2 \, x^{3} + 1}{2 \, {\left (4 \, x^{2} \log \relax (2) - x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 34, normalized size = 1.79 \begin {gather*} x e^{\left (\frac {8 \, x^{3} \log \relax (2) - 2 \, x^{3} + 1}{2 \, {\left (4 \, x^{2} \log \relax (2) - x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 31, normalized size = 1.63
method | result | size |
gosper | \({\mathrm e}^{\frac {8 x^{3} \ln \relax (2)-2 x^{3}+1}{2 x^{2} \left (4 \ln \relax (2)-1\right )}} x\) | \(31\) |
risch | \({\mathrm e}^{\frac {8 x^{3} \ln \relax (2)-2 x^{3}+1}{2 x^{2} \left (4 \ln \relax (2)-1\right )}} x\) | \(31\) |
norman | \(x \,{\mathrm e}^{\frac {8 x^{3} \ln \relax (2)-2 x^{3}+1}{8 x^{2} \ln \relax (2)-2 x^{2}}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 41, normalized size = 2.16 \begin {gather*} x e^{\left (\frac {4 \, x \log \relax (2)}{4 \, \log \relax (2) - 1} - \frac {x}{4 \, \log \relax (2) - 1} + \frac {1}{2 \, x^{2} {\left (4 \, \log \relax (2) - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.38, size = 61, normalized size = 3.21 \begin {gather*} 2^{\frac {8\,x^3}{8\,x^2\,\ln \relax (2)-2\,x^2}}\,x\,{\mathrm {e}}^{-\frac {2\,x^3}{8\,x^2\,\ln \relax (2)-2\,x^2}}\,{\mathrm {e}}^{\frac {1}{8\,x^2\,\ln \relax (2)-2\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 31, normalized size = 1.63 \begin {gather*} x e^{\frac {- 2 x^{3} + 8 x^{3} \log {\relax (2 )} + 1}{- 2 x^{2} + 8 x^{2} \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________