Optimal. Leaf size=19 \[ e^{e^{-5+3 x}}+\log \left (\frac {1}{3} (-1+x) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {1593, 6742, 2282, 2194, 72} \begin {gather*} e^{e^{3 x-5}}+\log (1-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 1593
Rule 2194
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+2 x+e^{-5+e^{-5+3 x}+3 x} \left (-3 x+3 x^2\right )}{(-1+x) x} \, dx\\ &=\int \left (3 e^{-5+e^{-5+3 x}+3 x}+\frac {-1+2 x}{(-1+x) x}\right ) \, dx\\ &=3 \int e^{-5+e^{-5+3 x}+3 x} \, dx+\int \frac {-1+2 x}{(-1+x) x} \, dx\\ &=\int \left (\frac {1}{-1+x}+\frac {1}{x}\right ) \, dx+\operatorname {Subst}\left (\int e^{-5+\frac {x}{e^5}} \, dx,x,e^{3 x}\right )\\ &=e^{e^{-5+3 x}}+\log (1-x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 18, normalized size = 0.95 \begin {gather*} e^{e^{-5+3 x}}+\log (1-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 35, normalized size = 1.84 \begin {gather*} {\left (e^{\left (3 \, x - 5\right )} \log \left (x^{2} - x\right ) + e^{\left (3 \, x + e^{\left (3 \, x - 5\right )} - 5\right )}\right )} e^{\left (-3 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 33, normalized size = 1.74 \begin {gather*} {\left (e^{\left (3 \, x\right )} \log \left (x - 1\right ) + e^{\left (3 \, x\right )} \log \relax (x) + e^{\left (3 \, x + e^{\left (3 \, x - 5\right )}\right )}\right )} e^{\left (-3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 15, normalized size = 0.79
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{3 x -5}}+\ln \left (x -1\right )+\ln \relax (x )\) | \(15\) |
risch | \(\ln \left (x^{2}-x \right )+{\mathrm e}^{{\mathrm e}^{3 x -5}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 14, normalized size = 0.74 \begin {gather*} e^{\left (e^{\left (3 \, x - 5\right )}\right )} + \log \left (x - 1\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 15, normalized size = 0.79 \begin {gather*} \ln \left (x\,\left (x-1\right )\right )+{\mathrm {e}}^{{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{-5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 14, normalized size = 0.74 \begin {gather*} e^{e^{3 x - 5}} + \log {\left (x^{2} - x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________