Optimal. Leaf size=23 \[ 4 \left (-8+\frac {5 \log \left (\frac {-2+9 x^2}{\log (x)}\right )}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 6, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {12, 1593, 6725, 260, 2302, 29} \begin {gather*} \frac {20 \log \left (2-9 x^2\right )}{\log (4)}-\frac {20 \log (\log (x))}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 260
Rule 1593
Rule 2302
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {40-180 x^2+360 x^2 \log (x)}{\left (-2 x+9 x^3\right ) \log (x)} \, dx}{\log (4)}\\ &=\frac {\int \frac {40-180 x^2+360 x^2 \log (x)}{x \left (-2+9 x^2\right ) \log (x)} \, dx}{\log (4)}\\ &=\frac {\int \left (\frac {360 x}{-2+9 x^2}-\frac {20}{x \log (x)}\right ) \, dx}{\log (4)}\\ &=-\frac {20 \int \frac {1}{x \log (x)} \, dx}{\log (4)}+\frac {360 \int \frac {x}{-2+9 x^2} \, dx}{\log (4)}\\ &=\frac {20 \log \left (2-9 x^2\right )}{\log (4)}-\frac {20 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )}{\log (4)}\\ &=\frac {20 \log \left (2-9 x^2\right )}{\log (4)}-\frac {20 \log (\log (x))}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 20, normalized size = 0.87 \begin {gather*} \frac {20 \left (\log \left (2-9 x^2\right )-\log (\log (x))\right )}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 0.87 \begin {gather*} \frac {10 \, {\left (\log \left (9 \, x^{2} - 2\right ) - \log \left (\log \relax (x)\right )\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 20, normalized size = 0.87 \begin {gather*} \frac {10 \, {\left (\log \left (9 \, x^{2} - 2\right ) - \log \left (\log \relax (x)\right )\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.91
method | result | size |
default | \(\frac {-10 \ln \left (\ln \relax (x )\right )+10 \ln \left (9 x^{2}-2\right )}{\ln \relax (2)}\) | \(21\) |
norman | \(-\frac {10 \ln \left (\ln \relax (x )\right )}{\ln \relax (2)}+\frac {10 \ln \left (9 x^{2}-2\right )}{\ln \relax (2)}\) | \(25\) |
risch | \(-\frac {10 \ln \left (\ln \relax (x )\right )}{\ln \relax (2)}+\frac {10 \ln \left (9 x^{2}-2\right )}{\ln \relax (2)}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 20, normalized size = 0.87 \begin {gather*} \frac {10 \, {\left (\log \left (9 \, x^{2} - 2\right ) - \log \left (\log \relax (x)\right )\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 18, normalized size = 0.78 \begin {gather*} -\frac {10\,\left (\ln \left (\ln \relax (x)\right )-\ln \left (x^2-\frac {2}{9}\right )\right )}{\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.96 \begin {gather*} \frac {10 \log {\left (9 x^{2} - 2 \right )}}{\log {\relax (2 )}} - \frac {10 \log {\left (\log {\relax (x )} \right )}}{\log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________