Optimal. Leaf size=23 \[ 10 x^4 \left (x+\frac {x}{-\frac {1}{5}+\log \left (-1+e^{5 x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {200 x^4+e^{5 x} \left (-200 x^4-1250 x^5\right )+\left (-750 x^4+750 e^{5 x} x^4\right ) \log \left (-1+e^{5 x}\right )+\left (-1250 x^4+1250 e^{5 x} x^4\right ) \log ^2\left (-1+e^{5 x}\right )}{-1+e^{5 x}+\left (10-10 e^{5 x}\right ) \log \left (-1+e^{5 x}\right )+\left (-25+25 e^{5 x}\right ) \log ^2\left (-1+e^{5 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 x^4 \left (-4+e^{5 x} (4+25 x)-15 \left (-1+e^{5 x}\right ) \log \left (-1+e^{5 x}\right )-25 \left (-1+e^{5 x}\right ) \log ^2\left (-1+e^{5 x}\right )\right )}{\left (1-e^{5 x}\right ) \left (1-5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx\\ &=50 \int \frac {x^4 \left (-4+e^{5 x} (4+25 x)-15 \left (-1+e^{5 x}\right ) \log \left (-1+e^{5 x}\right )-25 \left (-1+e^{5 x}\right ) \log ^2\left (-1+e^{5 x}\right )\right )}{\left (1-e^{5 x}\right ) \left (1-5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx\\ &=50 \int \left (-\frac {5 x^5}{\left (-1+e^x\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}+\frac {5 \left (4+3 e^x+2 e^{2 x}+e^{3 x}\right ) x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}-\frac {x^4 \left (4+25 x-15 \log \left (-1+e^{5 x}\right )-25 \log ^2\left (-1+e^{5 x}\right )\right )}{\left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}\right ) \, dx\\ &=-\left (50 \int \frac {x^4 \left (4+25 x-15 \log \left (-1+e^{5 x}\right )-25 \log ^2\left (-1+e^{5 x}\right )\right )}{\left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx\right )-250 \int \frac {x^5}{\left (-1+e^x\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+250 \int \frac {\left (4+3 e^x+2 e^{2 x}+e^{3 x}\right ) x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx\\ &=-\left (50 \int \left (-x^4+\frac {25 x^5}{\left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}-\frac {5 x^4}{-1+5 \log \left (-1+e^{5 x}\right )}\right ) \, dx\right )-250 \int \frac {x^5}{\left (-1+e^x\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+250 \int \left (\frac {4 x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}+\frac {3 e^x x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}+\frac {2 e^{2 x} x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}+\frac {e^{3 x} x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2}\right ) \, dx\\ &=10 x^5-250 \int \frac {x^5}{\left (-1+e^x\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+250 \int \frac {e^{3 x} x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+250 \int \frac {x^4}{-1+5 \log \left (-1+e^{5 x}\right )} \, dx+500 \int \frac {e^{2 x} x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+750 \int \frac {e^x x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx+1000 \int \frac {x^5}{\left (1+e^x+e^{2 x}+e^{3 x}+e^{4 x}\right ) \left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx-1250 \int \frac {x^5}{\left (-1+5 \log \left (-1+e^{5 x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 29, normalized size = 1.26 \begin {gather*} -50 \left (-\frac {x^5}{5}-\frac {x^5}{-1+5 \log \left (-1+e^{5 x}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 33, normalized size = 1.43 \begin {gather*} \frac {10 \, {\left (5 \, x^{5} \log \left (e^{\left (5 \, x\right )} - 1\right ) + 4 \, x^{5}\right )}}{5 \, \log \left (e^{\left (5 \, x\right )} - 1\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 33, normalized size = 1.43 \begin {gather*} \frac {10 \, {\left (5 \, x^{5} \log \left (e^{\left (5 \, x\right )} - 1\right ) + 4 \, x^{5}\right )}}{5 \, \log \left (e^{\left (5 \, x\right )} - 1\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.09
method | result | size |
risch | \(10 x^{5}+\frac {50 x^{5}}{-1+5 \ln \left ({\mathrm e}^{5 x}-1\right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 70, normalized size = 3.04 \begin {gather*} \frac {10 \, {\left (5 \, x^{5} \log \left (e^{\left (4 \, x\right )} + e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )} + e^{x} + 1\right ) + 5 \, x^{5} \log \left (e^{x} - 1\right ) + 4 \, x^{5}\right )}}{5 \, \log \left (e^{\left (4 \, x\right )} + e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )} + e^{x} + 1\right ) + 5 \, \log \left (e^{x} - 1\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 79, normalized size = 3.43 \begin {gather*} \frac {10\,x^4\,{\mathrm {e}}^{-5\,x}\,\left ({\mathrm {e}}^{5\,x}+5\,x\,{\mathrm {e}}^{5\,x}-1\right )-50\,x^4\,\ln \left ({\mathrm {e}}^{5\,x}-1\right )\,{\mathrm {e}}^{-5\,x}\,\left ({\mathrm {e}}^{5\,x}-1\right )}{5\,\ln \left ({\mathrm {e}}^{5\,x}-1\right )-1}-10\,x^4\,{\mathrm {e}}^{-5\,x}+10\,x^4+10\,x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.87 \begin {gather*} 10 x^{5} + \frac {50 x^{5}}{5 \log {\left (e^{5 x} - 1 \right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________