Optimal. Leaf size=27 \[ e^{x^2 \left (x-e^x \left (5+x-x \log \left (4 (4+x)^2\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 22.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) \left (12 x^2+3 x^3+e^x \left (-40 x-42 x^2-10 x^3-x^4\right )+e^x \left (12 x^2+7 x^3+x^4\right ) \log \left (64+32 x+4 x^2\right )\right )}{4+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2+\frac {\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x \left (-40-42 x-10 x^2-x^3+12 x \log \left (4 (4+x)^2\right )+7 x^2 \log \left (4 (4+x)^2\right )+x^3 \log \left (4 (4+x)^2\right )\right )}{4+x}\right ) \, dx\\ &=3 \int \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx+\int \frac {\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x \left (-40-42 x-10 x^2-x^3+12 x \log \left (4 (4+x)^2\right )+7 x^2 \log \left (4 (4+x)^2\right )+x^3 \log \left (4 (4+x)^2\right )\right )}{4+x} \, dx\\ &=3 \int \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx+\int \left (-\frac {\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x \left (40+42 x+10 x^2+x^3\right )}{4+x}+\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 (3+x) \log \left (4 (4+x)^2\right )\right ) \, dx\\ &=3 \int \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx-\int \frac {\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x \left (40+42 x+10 x^2+x^3\right )}{4+x} \, dx+\int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 (3+x) \log \left (4 (4+x)^2\right ) \, dx\\ &=3 \int \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx-\int \left (-32 \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right )+18 \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x+6 \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2+\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^3+\frac {128 \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right )}{4+x}\right ) \, dx+\int \left (3 \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \log \left (4 (4+x)^2\right )+\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^3 \log \left (4 (4+x)^2\right )\right ) \, dx\\ &=3 \int \exp \left (x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx+3 \int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \log \left (4 (4+x)^2\right ) \, dx-6 \int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^2 \, dx-18 \int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x \, dx+32 \int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) \, dx-128 \int \frac {\exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right )}{4+x} \, dx-\int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^3 \, dx+\int \exp \left (x+x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )\right ) x^3 \log \left (4 (4+x)^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.99, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{x^3+e^x \left (-5 x^2-x^3\right )+e^x x^3 \log \left (64+32 x+4 x^2\right )} \left (12 x^2+3 x^3+e^x \left (-40 x-42 x^2-10 x^3-x^4\right )+e^x \left (12 x^2+7 x^3+x^4\right ) \log \left (64+32 x+4 x^2\right )\right )}{4+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 35, normalized size = 1.30 \begin {gather*} e^{\left (x^{3} e^{x} \log \left (4 \, x^{2} + 32 \, x + 64\right ) + x^{3} - {\left (x^{3} + 5 \, x^{2}\right )} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.36, size = 36, normalized size = 1.33 \begin {gather*} e^{\left (x^{3} e^{x} \log \left (4 \, x^{2} + 32 \, x + 64\right ) - x^{3} e^{x} + x^{3} - 5 \, x^{2} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 108, normalized size = 4.00
method | result | size |
risch | \(4^{{\mathrm e}^{x} x^{3}} \left (4+x \right )^{2 \,{\mathrm e}^{x} x^{3}} {\mathrm e}^{-\frac {x^{2} \left (i {\mathrm e}^{x} x \pi \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{3}-2 i {\mathrm e}^{x} x \pi \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (4+x \right )\right )+i {\mathrm e}^{x} x \pi \,\mathrm {csgn}\left (i \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i \left (4+x \right )\right )^{2}+2 \,{\mathrm e}^{x} x +10 \,{\mathrm e}^{x}-2 x \right )}{2}}\) | \(108\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 39, normalized size = 1.44 \begin {gather*} e^{\left (2 \, x^{3} e^{x} \log \relax (2) + 2 \, x^{3} e^{x} \log \left (x + 4\right ) - x^{3} e^{x} + x^{3} - 5 \, x^{2} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 38, normalized size = 1.41 \begin {gather*} {\mathrm {e}}^{x^3}\,{\mathrm {e}}^{-x^3\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-5\,x^2\,{\mathrm {e}}^x}\,{\left (4\,x^2+32\,x+64\right )}^{x^3\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 36, normalized size = 1.33 \begin {gather*} e^{x^{3} e^{x} \log {\left (4 x^{2} + 32 x + 64 \right )} + x^{3} + \left (- x^{3} - 5 x^{2}\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________