Optimal. Leaf size=22 \[ 3+e^{e^{64 e^4}}+\frac {\log (x)}{5 (3+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 11, normalized size of antiderivative = 0.50, number of steps used = 9, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6688, 12, 6742, 44, 2319} \begin {gather*} \frac {\log (x)}{5 (x+3)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 44
Rule 2319
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+x-2 x \log (x)}{5 x (3+x)^3} \, dx\\ &=\frac {1}{5} \int \frac {3+x-2 x \log (x)}{x (3+x)^3} \, dx\\ &=\frac {1}{5} \int \left (\frac {1}{x (3+x)^2}-\frac {2 \log (x)}{(3+x)^3}\right ) \, dx\\ &=\frac {1}{5} \int \frac {1}{x (3+x)^2} \, dx-\frac {2}{5} \int \frac {\log (x)}{(3+x)^3} \, dx\\ &=\frac {\log (x)}{5 (3+x)^2}-\frac {1}{5} \int \frac {1}{x (3+x)^2} \, dx+\frac {1}{5} \int \left (\frac {1}{9 x}-\frac {1}{3 (3+x)^2}-\frac {1}{9 (3+x)}\right ) \, dx\\ &=\frac {1}{15 (3+x)}+\frac {\log (x)}{45}+\frac {\log (x)}{5 (3+x)^2}-\frac {1}{45} \log (3+x)-\frac {1}{5} \int \left (\frac {1}{9 x}-\frac {1}{3 (3+x)^2}-\frac {1}{9 (3+x)}\right ) \, dx\\ &=\frac {\log (x)}{5 (3+x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 11, normalized size = 0.50 \begin {gather*} \frac {\log (x)}{5 (3+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 14, normalized size = 0.64 \begin {gather*} \frac {\log \relax (x)}{5 \, {\left (x^{2} + 6 \, x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 14, normalized size = 0.64 \begin {gather*} \frac {\log \relax (x)}{5 \, {\left (x^{2} + 6 \, x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 10, normalized size = 0.45
method | result | size |
norman | \(\frac {\ln \relax (x )}{5 \left (3+x \right )^{2}}\) | \(10\) |
risch | \(\frac {\ln \relax (x )}{5 x^{2}+30 x +45}\) | \(15\) |
default | \(\frac {\ln \relax (x )}{45}-\frac {\ln \relax (x ) x \left (x +6\right )}{45 \left (3+x \right )^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 51, normalized size = 2.32 \begin {gather*} \frac {2 \, x + 9}{30 \, {\left (x^{2} + 6 \, x + 9\right )}} + \frac {\log \relax (x)}{5 \, {\left (x^{2} + 6 \, x + 9\right )}} - \frac {1}{10 \, {\left (x^{2} + 6 \, x + 9\right )}} - \frac {1}{15 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.38, size = 9, normalized size = 0.41 \begin {gather*} \frac {\ln \relax (x)}{5\,{\left (x+3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.55 \begin {gather*} \frac {\log {\relax (x )}}{5 x^{2} + 30 x + 45} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________