Optimal. Leaf size=23 \[ \frac {2 e^{2 x} \left (5+\frac {2}{x^2}\right )}{5 x^2}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 19, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {12, 14, 2199, 2177, 2178} \begin {gather*} \frac {4 e^{2 x}}{5 x^4}+\frac {2 e^{2 x}}{x^2}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2177
Rule 2178
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-5 x^5+e^{2 x} \left (-16+8 x-20 x^2+20 x^3\right )}{x^5} \, dx\\ &=\frac {1}{5} \int \left (-5+\frac {4 e^{2 x} \left (-4+2 x-5 x^2+5 x^3\right )}{x^5}\right ) \, dx\\ &=-x+\frac {4}{5} \int \frac {e^{2 x} \left (-4+2 x-5 x^2+5 x^3\right )}{x^5} \, dx\\ &=-x+\frac {4}{5} \int \left (-\frac {4 e^{2 x}}{x^5}+\frac {2 e^{2 x}}{x^4}-\frac {5 e^{2 x}}{x^3}+\frac {5 e^{2 x}}{x^2}\right ) \, dx\\ &=-x+\frac {8}{5} \int \frac {e^{2 x}}{x^4} \, dx-\frac {16}{5} \int \frac {e^{2 x}}{x^5} \, dx-4 \int \frac {e^{2 x}}{x^3} \, dx+4 \int \frac {e^{2 x}}{x^2} \, dx\\ &=\frac {4 e^{2 x}}{5 x^4}-\frac {8 e^{2 x}}{15 x^3}+\frac {2 e^{2 x}}{x^2}-\frac {4 e^{2 x}}{x}-x+\frac {16}{15} \int \frac {e^{2 x}}{x^3} \, dx-\frac {8}{5} \int \frac {e^{2 x}}{x^4} \, dx-4 \int \frac {e^{2 x}}{x^2} \, dx+8 \int \frac {e^{2 x}}{x} \, dx\\ &=\frac {4 e^{2 x}}{5 x^4}+\frac {22 e^{2 x}}{15 x^2}-x+8 \text {Ei}(2 x)-\frac {16}{15} \int \frac {e^{2 x}}{x^3} \, dx+\frac {16}{15} \int \frac {e^{2 x}}{x^2} \, dx-8 \int \frac {e^{2 x}}{x} \, dx\\ &=\frac {4 e^{2 x}}{5 x^4}+\frac {2 e^{2 x}}{x^2}-\frac {16 e^{2 x}}{15 x}-x-\frac {16}{15} \int \frac {e^{2 x}}{x^2} \, dx+\frac {32}{15} \int \frac {e^{2 x}}{x} \, dx\\ &=\frac {4 e^{2 x}}{5 x^4}+\frac {2 e^{2 x}}{x^2}-x+\frac {32 \text {Ei}(2 x)}{15}-\frac {32}{15} \int \frac {e^{2 x}}{x} \, dx\\ &=\frac {4 e^{2 x}}{5 x^4}+\frac {2 e^{2 x}}{x^2}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.09 \begin {gather*} -x+\frac {2 e^{2 x} \left (2 x+5 x^3\right )}{5 x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 24, normalized size = 1.04 \begin {gather*} -\frac {5 \, x^{5} - 2 \, {\left (5 \, x^{2} + 2\right )} e^{\left (2 \, x\right )}}{5 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 26, normalized size = 1.13 \begin {gather*} -\frac {5 \, x^{5} - 10 \, x^{2} e^{\left (2 \, x\right )} - 4 \, e^{\left (2 \, x\right )}}{5 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 0.91
method | result | size |
risch | \(-x +\frac {2 \left (5 x^{2}+2\right ) {\mathrm e}^{2 x}}{5 x^{4}}\) | \(21\) |
derivativedivides | \(-x +\frac {4 \,{\mathrm e}^{2 x}}{5 x^{4}}+\frac {2 \,{\mathrm e}^{2 x}}{x^{2}}\) | \(23\) |
default | \(-x +\frac {4 \,{\mathrm e}^{2 x}}{5 x^{4}}+\frac {2 \,{\mathrm e}^{2 x}}{x^{2}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 32, normalized size = 1.39 \begin {gather*} -x + 8 \, \Gamma \left (-1, -2 \, x\right ) + 16 \, \Gamma \left (-2, -2 \, x\right ) + \frac {64}{5} \, \Gamma \left (-3, -2 \, x\right ) + \frac {256}{5} \, \Gamma \left (-4, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 24, normalized size = 1.04 \begin {gather*} \frac {\frac {4\,{\mathrm {e}}^{2\,x}}{5}+2\,x^2\,{\mathrm {e}}^{2\,x}}{x^4}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.74 \begin {gather*} - x + \frac {\left (10 x^{2} + 4\right ) e^{2 x}}{5 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________