Optimal. Leaf size=27 \[ \log \left (5-e^5-e^{e^x}-e^{20 x^2}+2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6684} \begin {gather*} \log \left (-e^{20 x^2}+2 x-e^{e^x}-e^5+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (5-e^5-e^{e^x}-e^{20 x^2}+2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 21, normalized size = 0.78 \begin {gather*} \log \left (-5+e^5+e^{e^x}+e^{20 x^2}-2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 32, normalized size = 1.19 \begin {gather*} -x + \log \left (-{\left (2 \, x - e^{5} + 5\right )} e^{x} + e^{\left (20 \, x^{2} + x\right )} + e^{\left (x + e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 38, normalized size = 1.41 \begin {gather*} -x + \log \left (2 \, x e^{x} - e^{\left (20 \, x^{2} + x\right )} - e^{\left (x + e^{x}\right )} - e^{\left (x + 5\right )} + 5 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.67
method | result | size |
derivativedivides | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{20 x^{2}}+{\mathrm e}^{5}-2 x -5\right )\) | \(18\) |
default | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{20 x^{2}}+{\mathrm e}^{5}-2 x -5\right )\) | \(18\) |
norman | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{20 x^{2}}+{\mathrm e}^{5}-2 x -5\right )\) | \(18\) |
risch | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{20 x^{2}}+{\mathrm e}^{5}-2 x -5\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.85 \begin {gather*} \log \left (2 \, x - e^{5} - e^{\left (20 \, x^{2}\right )} - e^{\left (e^{x}\right )} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 23, normalized size = 0.85 \begin {gather*} \ln \left (2\,x-{\mathrm {e}}^{{\mathrm {e}}^x}-{\mathrm {e}}^5-{\mathrm {e}}^{20\,x^2}+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 0.74 \begin {gather*} \log {\left (- 2 x + e^{20 x^{2}} + e^{e^{x}} - 5 + e^{5} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________