Optimal. Leaf size=29 \[ \frac {e^3 x^2}{\left (-2+\frac {(-5+x)^2}{x}-x-\log (4) \log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^3 \left (-100 x^3+24 x^4\right )-2 e^3 x^4 \log (4)+2 e^3 x^4 \log (4) \log (x)}{-15625+22500 x-10800 x^2+1728 x^3+\left (1875 x-1800 x^2+432 x^3\right ) \log (4) \log (x)+\left (-75 x^2+36 x^3\right ) \log ^2(4) \log ^2(x)+x^3 \log ^3(4) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^3 x^3 (50+x (-12+\log (4))-x \log (4) \log (x))}{(25-12 x-x \log (4) \log (x))^3} \, dx\\ &=\left (2 e^3\right ) \int \frac {x^3 (50+x (-12+\log (4))-x \log (4) \log (x))}{(25-12 x-x \log (4) \log (x))^3} \, dx\\ &=\left (2 e^3\right ) \int \left (-\frac {x^3 (25+x \log (4))}{(-25+12 x+x \log (4) \log (x))^3}+\frac {x^3}{(-25+12 x+x \log (4) \log (x))^2}\right ) \, dx\\ &=-\left (\left (2 e^3\right ) \int \frac {x^3 (25+x \log (4))}{(-25+12 x+x \log (4) \log (x))^3} \, dx\right )+\left (2 e^3\right ) \int \frac {x^3}{(-25+12 x+x \log (4) \log (x))^2} \, dx\\ &=\left (2 e^3\right ) \int \frac {x^3}{(-25+12 x+x \log (4) \log (x))^2} \, dx-\left (2 e^3\right ) \int \left (\frac {25 x^3}{(-25+12 x+x \log (4) \log (x))^3}+\frac {x^4 \log (4)}{(-25+12 x+x \log (4) \log (x))^3}\right ) \, dx\\ &=\left (2 e^3\right ) \int \frac {x^3}{(-25+12 x+x \log (4) \log (x))^2} \, dx-\left (50 e^3\right ) \int \frac {x^3}{(-25+12 x+x \log (4) \log (x))^3} \, dx-\left (2 e^3 \log (4)\right ) \int \frac {x^4}{(-25+12 x+x \log (4) \log (x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 20, normalized size = 0.69 \begin {gather*} \frac {e^3 x^4}{(-25+12 x+x \log (4) \log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 46, normalized size = 1.59 \begin {gather*} \frac {x^{4} e^{3}}{4 \, x^{2} \log \relax (2)^{2} \log \relax (x)^{2} + 4 \, {\left (12 \, x^{2} - 25 \, x\right )} \log \relax (2) \log \relax (x) + 144 \, x^{2} - 600 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 47, normalized size = 1.62 \begin {gather*} \frac {x^{4} e^{3}}{4 \, x^{2} \log \relax (2)^{2} \log \relax (x)^{2} + 48 \, x^{2} \log \relax (2) \log \relax (x) - 100 \, x \log \relax (2) \log \relax (x) + 144 \, x^{2} - 600 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 21, normalized size = 0.72
method | result | size |
norman | \(\frac {x^{4} {\mathrm e}^{3}}{\left (2 x \ln \relax (2) \ln \relax (x )+12 x -25\right )^{2}}\) | \(21\) |
risch | \(\frac {x^{4} {\mathrm e}^{3}}{\left (2 x \ln \relax (2) \ln \relax (x )+12 x -25\right )^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 48, normalized size = 1.66 \begin {gather*} \frac {x^{4} e^{3}}{4 \, x^{2} \log \relax (2)^{2} \log \relax (x)^{2} + 144 \, x^{2} + 4 \, {\left (12 \, x^{2} \log \relax (2) - 25 \, x \log \relax (2)\right )} \log \relax (x) - 600 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^3\,\left (100\,x^3-24\,x^4\right )+4\,x^4\,{\mathrm {e}}^3\,\ln \relax (2)-4\,x^4\,{\mathrm {e}}^3\,\ln \relax (2)\,\ln \relax (x)}{22500\,x-10800\,x^2+1728\,x^3-4\,{\ln \relax (2)}^2\,{\ln \relax (x)}^2\,\left (75\,x^2-36\,x^3\right )+8\,x^3\,{\ln \relax (2)}^3\,{\ln \relax (x)}^3+2\,\ln \relax (2)\,\ln \relax (x)\,\left (432\,x^3-1800\,x^2+1875\,x\right )-15625} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 49, normalized size = 1.69 \begin {gather*} \frac {x^{4} e^{3}}{4 x^{2} \log {\relax (2 )}^{2} \log {\relax (x )}^{2} + 144 x^{2} - 600 x + \left (48 x^{2} \log {\relax (2 )} - 100 x \log {\relax (2 )}\right ) \log {\relax (x )} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________