Optimal. Leaf size=29 \[ 2 (4+x)+\frac {\left (2+e^{2 x}+x\right )^4}{3 (-3+x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 6.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48+e^{8 x} (3-x)+80 x+40 x^2-5 x^4-x^5+e^{6 x} \left (24+4 x-4 x^2\right )+e^{4 x} \left (72+48 x-6 x^2-6 x^3\right )+e^{2 x} \left (96+112 x+24 x^2-12 x^3-4 x^4\right )+\left (-112 x-144 x^2-48 x^3+4 x^4+3 x^5+e^{8 x} \left (-25 x+8 x^2\right )+e^{6 x} \left (-164 x-24 x^2+24 x^3\right )+e^{4 x} \left (-384 x-228 x^2+30 x^3+24 x^4\right )+e^{2 x} \left (-368 x-368 x^2-60 x^3+32 x^4+8 x^5\right )\right ) \log (x)+\left (54 x-36 x^2+6 x^3\right ) \log ^2(x)}{\left (27 x-18 x^2+3 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48+e^{8 x} (3-x)+80 x+40 x^2-5 x^4-x^5+e^{6 x} \left (24+4 x-4 x^2\right )+e^{4 x} \left (72+48 x-6 x^2-6 x^3\right )+e^{2 x} \left (96+112 x+24 x^2-12 x^3-4 x^4\right )+\left (-112 x-144 x^2-48 x^3+4 x^4+3 x^5+e^{8 x} \left (-25 x+8 x^2\right )+e^{6 x} \left (-164 x-24 x^2+24 x^3\right )+e^{4 x} \left (-384 x-228 x^2+30 x^3+24 x^4\right )+e^{2 x} \left (-368 x-368 x^2-60 x^3+32 x^4+8 x^5\right )\right ) \log (x)+\left (54 x-36 x^2+6 x^3\right ) \log ^2(x)}{x \left (27-18 x+3 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {48+e^{8 x} (3-x)+80 x+40 x^2-5 x^4-x^5+e^{6 x} \left (24+4 x-4 x^2\right )+e^{4 x} \left (72+48 x-6 x^2-6 x^3\right )+e^{2 x} \left (96+112 x+24 x^2-12 x^3-4 x^4\right )+\left (-112 x-144 x^2-48 x^3+4 x^4+3 x^5+e^{8 x} \left (-25 x+8 x^2\right )+e^{6 x} \left (-164 x-24 x^2+24 x^3\right )+e^{4 x} \left (-384 x-228 x^2+30 x^3+24 x^4\right )+e^{2 x} \left (-368 x-368 x^2-60 x^3+32 x^4+8 x^5\right )\right ) \log (x)+\left (54 x-36 x^2+6 x^3\right ) \log ^2(x)}{3 (-3+x)^2 x \log ^2(x)} \, dx\\ &=\frac {1}{3} \int \frac {48+e^{8 x} (3-x)+80 x+40 x^2-5 x^4-x^5+e^{6 x} \left (24+4 x-4 x^2\right )+e^{4 x} \left (72+48 x-6 x^2-6 x^3\right )+e^{2 x} \left (96+112 x+24 x^2-12 x^3-4 x^4\right )+\left (-112 x-144 x^2-48 x^3+4 x^4+3 x^5+e^{8 x} \left (-25 x+8 x^2\right )+e^{6 x} \left (-164 x-24 x^2+24 x^3\right )+e^{4 x} \left (-384 x-228 x^2+30 x^3+24 x^4\right )+e^{2 x} \left (-368 x-368 x^2-60 x^3+32 x^4+8 x^5\right )\right ) \log (x)+\left (54 x-36 x^2+6 x^3\right ) \log ^2(x)}{(-3+x)^2 x \log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (6-\frac {\left (2+e^{2 x}+x\right )^4}{(-3+x) x \log ^2(x)}+\frac {\left (2+e^{2 x}+x\right )^3 \left (-14+3 x+e^{2 x} (-25+8 x)\right )}{(-3+x)^2 \log (x)}\right ) \, dx\\ &=2 x-\frac {1}{3} \int \frac {\left (2+e^{2 x}+x\right )^4}{(-3+x) x \log ^2(x)} \, dx+\frac {1}{3} \int \frac {\left (2+e^{2 x}+x\right )^3 \left (-14+3 x+e^{2 x} (-25+8 x)\right )}{(-3+x)^2 \log (x)} \, dx\\ &=2 x-\frac {1}{3} \int \left (\frac {e^{8 x}}{(-3+x) x \log ^2(x)}+\frac {4 e^{6 x} (2+x)}{(-3+x) x \log ^2(x)}+\frac {6 e^{4 x} (2+x)^2}{(-3+x) x \log ^2(x)}+\frac {4 e^{2 x} (2+x)^3}{(-3+x) x \log ^2(x)}+\frac {(2+x)^4}{(-3+x) x \log ^2(x)}\right ) \, dx+\frac {1}{3} \int \left (-\frac {112}{(-3+x)^2 \log (x)}-\frac {144 x}{(-3+x)^2 \log (x)}-\frac {48 x^2}{(-3+x)^2 \log (x)}+\frac {4 x^3}{(-3+x)^2 \log (x)}+\frac {3 x^4}{(-3+x)^2 \log (x)}+\frac {e^{8 x} (-25+8 x)}{(-3+x)^2 \log (x)}+\frac {4 e^{2 x} (2+x)^2 \left (-23+2 x^2\right )}{(-3+x)^2 \log (x)}+\frac {4 e^{6 x} \left (-41-6 x+6 x^2\right )}{(-3+x)^2 \log (x)}+\frac {6 e^{4 x} \left (-64-38 x+5 x^2+4 x^3\right )}{(-3+x)^2 \log (x)}\right ) \, dx\\ &=2 x-\frac {1}{3} \int \frac {e^{8 x}}{(-3+x) x \log ^2(x)} \, dx-\frac {1}{3} \int \frac {(2+x)^4}{(-3+x) x \log ^2(x)} \, dx+\frac {1}{3} \int \frac {e^{8 x} (-25+8 x)}{(-3+x)^2 \log (x)} \, dx-\frac {4}{3} \int \frac {e^{6 x} (2+x)}{(-3+x) x \log ^2(x)} \, dx-\frac {4}{3} \int \frac {e^{2 x} (2+x)^3}{(-3+x) x \log ^2(x)} \, dx+\frac {4}{3} \int \frac {x^3}{(-3+x)^2 \log (x)} \, dx+\frac {4}{3} \int \frac {e^{2 x} (2+x)^2 \left (-23+2 x^2\right )}{(-3+x)^2 \log (x)} \, dx+\frac {4}{3} \int \frac {e^{6 x} \left (-41-6 x+6 x^2\right )}{(-3+x)^2 \log (x)} \, dx-2 \int \frac {e^{4 x} (2+x)^2}{(-3+x) x \log ^2(x)} \, dx+2 \int \frac {e^{4 x} \left (-64-38 x+5 x^2+4 x^3\right )}{(-3+x)^2 \log (x)} \, dx-16 \int \frac {x^2}{(-3+x)^2 \log (x)} \, dx-\frac {112}{3} \int \frac {1}{(-3+x)^2 \log (x)} \, dx-48 \int \frac {x}{(-3+x)^2 \log (x)} \, dx+\int \frac {x^4}{(-3+x)^2 \log (x)} \, dx\\ &=2 x-\frac {1}{3} \int \left (\frac {e^{8 x}}{3 (-3+x) \log ^2(x)}-\frac {e^{8 x}}{3 x \log ^2(x)}\right ) \, dx+\frac {1}{3} \int \left (-\frac {e^{8 x}}{(-3+x)^2 \log (x)}+\frac {8 e^{8 x}}{(-3+x) \log (x)}\right ) \, dx-\frac {1}{3} \int \frac {(2+x)^4}{(-3+x) x \log ^2(x)} \, dx-\frac {4}{3} \int \left (\frac {5 e^{6 x}}{3 (-3+x) \log ^2(x)}-\frac {2 e^{6 x}}{3 x \log ^2(x)}\right ) \, dx-\frac {4}{3} \int \left (\frac {9 e^{2 x}}{\log ^2(x)}+\frac {125 e^{2 x}}{3 (-3+x) \log ^2(x)}-\frac {8 e^{2 x}}{3 x \log ^2(x)}+\frac {e^{2 x} x}{\log ^2(x)}\right ) \, dx+\frac {4}{3} \int \left (\frac {6 e^{6 x}}{\log (x)}-\frac {5 e^{6 x}}{(-3+x)^2 \log (x)}+\frac {30 e^{6 x}}{(-3+x) \log (x)}\right ) \, dx+\frac {4}{3} \int \left (\frac {87 e^{2 x}}{\log (x)}-\frac {125 e^{2 x}}{(-3+x)^2 \log (x)}+\frac {250 e^{2 x}}{(-3+x) \log (x)}+\frac {20 e^{2 x} x}{\log (x)}+\frac {2 e^{2 x} x^2}{\log (x)}\right ) \, dx+\frac {4}{3} \int \frac {x^3}{(-3+x)^2 \log (x)} \, dx-2 \int \left (\frac {e^{4 x}}{\log ^2(x)}+\frac {25 e^{4 x}}{3 (-3+x) \log ^2(x)}-\frac {4 e^{4 x}}{3 x \log ^2(x)}\right ) \, dx+2 \int \left (\frac {29 e^{4 x}}{\log (x)}-\frac {25 e^{4 x}}{(-3+x)^2 \log (x)}+\frac {100 e^{4 x}}{(-3+x) \log (x)}+\frac {4 e^{4 x} x}{\log (x)}\right ) \, dx-16 \int \frac {x^2}{(-3+x)^2 \log (x)} \, dx-\frac {112}{3} \int \frac {1}{(-3+x)^2 \log (x)} \, dx-48 \int \frac {x}{(-3+x)^2 \log (x)} \, dx+\int \frac {x^4}{(-3+x)^2 \log (x)} \, dx\\ &=2 x-\frac {1}{9} \int \frac {e^{8 x}}{(-3+x) \log ^2(x)} \, dx+\frac {1}{9} \int \frac {e^{8 x}}{x \log ^2(x)} \, dx-\frac {1}{3} \int \frac {(2+x)^4}{(-3+x) x \log ^2(x)} \, dx-\frac {1}{3} \int \frac {e^{8 x}}{(-3+x)^2 \log (x)} \, dx+\frac {8}{9} \int \frac {e^{6 x}}{x \log ^2(x)} \, dx-\frac {4}{3} \int \frac {e^{2 x} x}{\log ^2(x)} \, dx+\frac {4}{3} \int \frac {x^3}{(-3+x)^2 \log (x)} \, dx-2 \int \frac {e^{4 x}}{\log ^2(x)} \, dx-\frac {20}{9} \int \frac {e^{6 x}}{(-3+x) \log ^2(x)} \, dx+\frac {8}{3} \int \frac {e^{4 x}}{x \log ^2(x)} \, dx+\frac {8}{3} \int \frac {e^{8 x}}{(-3+x) \log (x)} \, dx+\frac {8}{3} \int \frac {e^{2 x} x^2}{\log (x)} \, dx+\frac {32}{9} \int \frac {e^{2 x}}{x \log ^2(x)} \, dx-\frac {20}{3} \int \frac {e^{6 x}}{(-3+x)^2 \log (x)} \, dx+8 \int \frac {e^{6 x}}{\log (x)} \, dx+8 \int \frac {e^{4 x} x}{\log (x)} \, dx-12 \int \frac {e^{2 x}}{\log ^2(x)} \, dx-16 \int \frac {x^2}{(-3+x)^2 \log (x)} \, dx-\frac {50}{3} \int \frac {e^{4 x}}{(-3+x) \log ^2(x)} \, dx+\frac {80}{3} \int \frac {e^{2 x} x}{\log (x)} \, dx-\frac {112}{3} \int \frac {1}{(-3+x)^2 \log (x)} \, dx+40 \int \frac {e^{6 x}}{(-3+x) \log (x)} \, dx-48 \int \frac {x}{(-3+x)^2 \log (x)} \, dx-50 \int \frac {e^{4 x}}{(-3+x)^2 \log (x)} \, dx-\frac {500}{9} \int \frac {e^{2 x}}{(-3+x) \log ^2(x)} \, dx+58 \int \frac {e^{4 x}}{\log (x)} \, dx+116 \int \frac {e^{2 x}}{\log (x)} \, dx-\frac {500}{3} \int \frac {e^{2 x}}{(-3+x)^2 \log (x)} \, dx+200 \int \frac {e^{4 x}}{(-3+x) \log (x)} \, dx+\frac {1000}{3} \int \frac {e^{2 x}}{(-3+x) \log (x)} \, dx+\int \frac {x^4}{(-3+x)^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.08, size = 28, normalized size = 0.97 \begin {gather*} \frac {1}{3} \left (6 x+\frac {\left (2+e^{2 x}+x\right )^4}{(-3+x) \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 86, normalized size = 2.97 \begin {gather*} \frac {x^{4} + 8 \, x^{3} + 24 \, x^{2} + 4 \, {\left (x + 2\right )} e^{\left (6 \, x\right )} + 6 \, {\left (x^{2} + 4 \, x + 4\right )} e^{\left (4 \, x\right )} + 4 \, {\left (x^{3} + 6 \, x^{2} + 12 \, x + 8\right )} e^{\left (2 \, x\right )} + 6 \, {\left (x^{2} - 3 \, x\right )} \log \relax (x) + 32 \, x + e^{\left (8 \, x\right )} + 16}{3 \, {\left (x - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 113, normalized size = 3.90 \begin {gather*} \frac {x^{4} + 4 \, x^{3} e^{\left (2 \, x\right )} + 8 \, x^{3} + 6 \, x^{2} e^{\left (4 \, x\right )} + 24 \, x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2} \log \relax (x) + 24 \, x^{2} + 4 \, x e^{\left (6 \, x\right )} + 24 \, x e^{\left (4 \, x\right )} + 48 \, x e^{\left (2 \, x\right )} - 18 \, x \log \relax (x) + 32 \, x + e^{\left (8 \, x\right )} + 8 \, e^{\left (6 \, x\right )} + 24 \, e^{\left (4 \, x\right )} + 32 \, e^{\left (2 \, x\right )} + 16}{3 \, {\left (x \log \relax (x) - 3 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 104, normalized size = 3.59
method | result | size |
risch | \(2 x +\frac {x^{4}+4 \,{\mathrm e}^{2 x} x^{3}+6 x^{2} {\mathrm e}^{4 x}+4 x \,{\mathrm e}^{6 x}+{\mathrm e}^{8 x}+8 x^{3}+24 \,{\mathrm e}^{2 x} x^{2}+24 x \,{\mathrm e}^{4 x}+8 \,{\mathrm e}^{6 x}+24 x^{2}+48 x \,{\mathrm e}^{2 x}+24 \,{\mathrm e}^{4 x}+32 x +32 \,{\mathrm e}^{2 x}+16}{3 \left (x -3\right ) \ln \relax (x )}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 86, normalized size = 2.97 \begin {gather*} \frac {x^{4} + 8 \, x^{3} + 24 \, x^{2} + 4 \, {\left (x + 2\right )} e^{\left (6 \, x\right )} + 6 \, {\left (x^{2} + 4 \, x + 4\right )} e^{\left (4 \, x\right )} + 4 \, {\left (x^{3} + 6 \, x^{2} + 12 \, x + 8\right )} e^{\left (2 \, x\right )} + 6 \, {\left (x^{2} - 3 \, x\right )} \log \relax (x) + 32 \, x + e^{\left (8 \, x\right )} + 16}{3 \, {\left (x - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.56, size = 217, normalized size = 7.48 \begin {gather*} 21\,x-\frac {625\,x}{3\,\left (x^2-6\,x+9\right )}+\frac {\frac {{\left (x+{\mathrm {e}}^{2\,x}+2\right )}^4}{3\,\left (x-3\right )}-\frac {x\,\ln \relax (x)\,{\left (x+{\mathrm {e}}^{2\,x}+2\right )}^3\,\left (3\,x-25\,{\mathrm {e}}^{2\,x}+8\,x\,{\mathrm {e}}^{2\,x}-14\right )}{3\,{\left (x-3\right )}^2}}{\ln \relax (x)}+\frac {22\,x^2}{3}+x^3-\frac {{\mathrm {e}}^{2\,x}\,\left (-\frac {8\,x^5}{3}-\frac {32\,x^4}{3}+20\,x^3+\frac {368\,x^2}{3}+\frac {368\,x}{3}\right )}{x^2-6\,x+9}-\frac {{\mathrm {e}}^{8\,x}\,\left (\frac {25\,x}{3}-\frac {8\,x^2}{3}\right )}{x^2-6\,x+9}-\frac {{\mathrm {e}}^{6\,x}\,\left (-8\,x^3+8\,x^2+\frac {164\,x}{3}\right )}{x^2-6\,x+9}-\frac {{\mathrm {e}}^{4\,x}\,\left (-8\,x^4-10\,x^3+76\,x^2+128\,x\right )}{x^2-6\,x+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.71, size = 291, normalized size = 10.03 \begin {gather*} 2 x + \frac {\left (9 x^{3} \log {\relax (x )}^{3} - 81 x^{2} \log {\relax (x )}^{3} + 243 x \log {\relax (x )}^{3} - 243 \log {\relax (x )}^{3}\right ) e^{8 x} + \left (36 x^{4} \log {\relax (x )}^{3} - 252 x^{3} \log {\relax (x )}^{3} + 324 x^{2} \log {\relax (x )}^{3} + 972 x \log {\relax (x )}^{3} - 1944 \log {\relax (x )}^{3}\right ) e^{6 x} + \left (54 x^{5} \log {\relax (x )}^{3} - 270 x^{4} \log {\relax (x )}^{3} - 270 x^{3} \log {\relax (x )}^{3} + 2430 x^{2} \log {\relax (x )}^{3} - 5832 \log {\relax (x )}^{3}\right ) e^{4 x} + \left (36 x^{6} \log {\relax (x )}^{3} - 108 x^{5} \log {\relax (x )}^{3} - 540 x^{4} \log {\relax (x )}^{3} + 1260 x^{3} \log {\relax (x )}^{3} + 3240 x^{2} \log {\relax (x )}^{3} - 3888 x \log {\relax (x )}^{3} - 7776 \log {\relax (x )}^{3}\right ) e^{2 x}}{27 x^{4} \log {\relax (x )}^{4} - 324 x^{3} \log {\relax (x )}^{4} + 1458 x^{2} \log {\relax (x )}^{4} - 2916 x \log {\relax (x )}^{4} + 2187 \log {\relax (x )}^{4}} + \frac {x^{4} + 8 x^{3} + 24 x^{2} + 32 x + 16}{\left (3 x - 9\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________