Optimal. Leaf size=25 \[ \frac {28-\frac {-1+\frac {3 e^{-x} x}{4}}{2 x}}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 5, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {12, 6742, 2197, 37} \begin {gather*} \frac {(28 x+1)^2}{2 x^2}-\frac {3 e^{-x}}{8 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 2197
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {e^{-x} \left (4 e^x (-2-56 x)+3 x+3 x^2\right )}{x^3} \, dx\\ &=\frac {1}{8} \int \left (\frac {3 e^{-x} (1+x)}{x^2}-\frac {8 (1+28 x)}{x^3}\right ) \, dx\\ &=\frac {3}{8} \int \frac {e^{-x} (1+x)}{x^2} \, dx-\int \frac {1+28 x}{x^3} \, dx\\ &=-\frac {3 e^{-x}}{8 x}+\frac {(1+28 x)^2}{2 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 0.80 \begin {gather*} \frac {4+224 x-3 e^{-x} x}{8 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 31, normalized size = 1.24 \begin {gather*} \frac {{\left ({\left (56 \, x + 1\right )} e^{\left (x + 2 \, \log \relax (2)\right )} - 3 \, x\right )} e^{\left (-x - 2 \, \log \relax (2)\right )}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 17, normalized size = 0.68 \begin {gather*} -\frac {3 \, x e^{\left (-x\right )} - 224 \, x - 4}{8 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.84
method | result | size |
risch | \(\frac {56 x +1}{2 x^{2}}-\frac {3 \,{\mathrm e}^{-x}}{8 x}\) | \(21\) |
norman | \(\frac {\left (-\frac {3 x}{2}+28 \,{\mathrm e}^{x +2 \ln \relax (2)} x +\frac {{\mathrm e}^{x +2 \ln \relax (2)}}{2}\right ) {\mathrm e}^{-x}}{4 x^{2}}\) | \(37\) |
derivativedivides | \(\frac {1}{2 x^{2}}+\frac {28}{x}-\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \left (2 \ln \relax (2)^{2}-\left (x +2 \ln \relax (2)\right ) \ln \relax (2)+\ln \relax (2)+x \right )}{2 x^{2}}-\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2) \left (2 \ln \relax (2)^{2}-\left (x +2 \ln \relax (2)\right ) \ln \relax (2)+\ln \relax (2)+2 x \right )}{x^{2}}+\frac {9 \ln \relax (2) {\mathrm e}^{-x -2 \ln \relax (2)} \left (x +2 \ln \relax (2)\right )}{2 x^{2}}+\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2)}{2 x^{2}}-\frac {3 \ln \relax (2)^{2} {\mathrm e}^{-x -2 \ln \relax (2)} \left (x +2 \ln \relax (2)\right )}{x^{2}}+\frac {6 \ln \relax (2)^{3} {\mathrm e}^{-x -2 \ln \relax (2)}}{x^{2}}-\frac {6 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2)^{2}}{x^{2}}\) | \(182\) |
default | \(\frac {1}{2 x^{2}}+\frac {28}{x}-\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \left (2 \ln \relax (2)^{2}-\left (x +2 \ln \relax (2)\right ) \ln \relax (2)+\ln \relax (2)+x \right )}{2 x^{2}}-\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2) \left (2 \ln \relax (2)^{2}-\left (x +2 \ln \relax (2)\right ) \ln \relax (2)+\ln \relax (2)+2 x \right )}{x^{2}}+\frac {9 \ln \relax (2) {\mathrm e}^{-x -2 \ln \relax (2)} \left (x +2 \ln \relax (2)\right )}{2 x^{2}}+\frac {3 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2)}{2 x^{2}}-\frac {3 \ln \relax (2)^{2} {\mathrm e}^{-x -2 \ln \relax (2)} \left (x +2 \ln \relax (2)\right )}{x^{2}}+\frac {6 \ln \relax (2)^{3} {\mathrm e}^{-x -2 \ln \relax (2)}}{x^{2}}-\frac {6 \,{\mathrm e}^{-x -2 \ln \relax (2)} \ln \relax (2)^{2}}{x^{2}}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 22, normalized size = 0.88 \begin {gather*} \frac {28}{x} + \frac {1}{2 \, x^{2}} + \frac {3}{8} \, {\rm Ei}\left (-x\right ) - \frac {3}{8} \, \Gamma \left (-1, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.68 \begin {gather*} -\frac {x\,\left (\frac {3\,{\mathrm {e}}^{-x}}{8}-28\right )-\frac {1}{2}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.80 \begin {gather*} - \frac {3 e^{- x}}{8 x} - \frac {- 56 x - 1}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________