Optimal. Leaf size=22 \[ \frac {1}{20} e^{-\frac {1}{2}-(-5+x) x^2 \log (\log (\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{2} \left (-1-\left (-10 x^2+2 x^3\right ) \log (\log (\log (x)))\right )\right ) \left (5 x-x^2+\left (10 x-3 x^2\right ) \log (x) \log (\log (x)) \log (\log (\log (x)))\right )}{20 \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{20} \int \frac {\exp \left (\frac {1}{2} \left (-1-\left (-10 x^2+2 x^3\right ) \log (\log (\log (x)))\right )\right ) \left (5 x-x^2+\left (10 x-3 x^2\right ) \log (x) \log (\log (x)) \log (\log (\log (x)))\right )}{\log (x) \log (\log (x))} \, dx\\ &=\frac {1}{20} \int \frac {x \log ^{-1+5 x^2-x^3}(\log (x)) (5-x-(-10+3 x) \log (x) \log (\log (x)) \log (\log (\log (x))))}{\sqrt {e} \log (x)} \, dx\\ &=\frac {\int \frac {x \log ^{-1+5 x^2-x^3}(\log (x)) (5-x-(-10+3 x) \log (x) \log (\log (x)) \log (\log (\log (x))))}{\log (x)} \, dx}{20 \sqrt {e}}\\ &=\frac {\int \left (-\frac {(-5+x) x \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)}-x (-10+3 x) \log ^{5 x^2-x^3}(\log (x)) \log (\log (\log (x)))\right ) \, dx}{20 \sqrt {e}}\\ &=-\frac {\int \frac {(-5+x) x \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)} \, dx}{20 \sqrt {e}}-\frac {\int x (-10+3 x) \log ^{5 x^2-x^3}(\log (x)) \log (\log (\log (x))) \, dx}{20 \sqrt {e}}\\ &=-\frac {\int \left (-\frac {5 x \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)}+\frac {x^2 \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)}\right ) \, dx}{20 \sqrt {e}}-\frac {\int x (-10+3 x) \log ^{(5-x) x^2}(\log (x)) \log (\log (\log (x))) \, dx}{20 \sqrt {e}}\\ &=-\frac {\int \frac {x^2 \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)} \, dx}{20 \sqrt {e}}-\frac {\int \left (-10 x \log ^{(5-x) x^2}(\log (x)) \log (\log (\log (x)))+3 x^2 \log ^{(5-x) x^2}(\log (x)) \log (\log (\log (x)))\right ) \, dx}{20 \sqrt {e}}+\frac {\int \frac {x \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)} \, dx}{4 \sqrt {e}}\\ &=-\frac {\int \frac {x^2 \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)} \, dx}{20 \sqrt {e}}-\frac {3 \int x^2 \log ^{(5-x) x^2}(\log (x)) \log (\log (\log (x))) \, dx}{20 \sqrt {e}}+\frac {\int \frac {x \log ^{-1+5 x^2-x^3}(\log (x))}{\log (x)} \, dx}{4 \sqrt {e}}+\frac {\int x \log ^{(5-x) x^2}(\log (x)) \log (\log (\log (x))) \, dx}{2 \sqrt {e}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 21, normalized size = 0.95 \begin {gather*} \frac {\log ^{-\left ((-5+x) x^2\right )}(\log (x))}{20 \sqrt {e}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 20, normalized size = 0.91 \begin {gather*} \frac {1}{20} \, e^{\left (-{\left (x^{3} - 5 \, x^{2}\right )} \log \left (\log \left (\log \relax (x)\right )\right ) - \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.65, size = 23, normalized size = 1.05 \begin {gather*} \frac {1}{20} \, e^{\left (-x^{3} \log \left (\log \left (\log \relax (x)\right )\right ) + 5 \, x^{2} \log \left (\log \left (\log \relax (x)\right )\right ) - \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.82
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )\right )^{-x^{2} \left (x -5\right )} {\mathrm e}^{-\frac {1}{2}}}{20}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 23, normalized size = 1.05 \begin {gather*} \frac {1}{20} \, e^{\left (-x^{3} \log \left (\log \left (\log \relax (x)\right )\right ) + 5 \, x^{2} \log \left (\log \left (\log \relax (x)\right )\right ) - \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.28, size = 19, normalized size = 0.86 \begin {gather*} \frac {{\ln \left (\ln \relax (x)\right )}^{5\,x^2-x^3}\,{\mathrm {e}}^{-\frac {1}{2}}}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.27, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{- \left (x^{3} - 5 x^{2}\right ) \log {\left (\log {\left (\log {\relax (x )} \right )} \right )} - \frac {1}{2}}}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________