Optimal. Leaf size=22 \[ e^{9-x+\frac {x}{\log \left (\frac {1}{4} (x+x \log (2))\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.84, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {2444, 6706} \begin {gather*} e^{-x+\frac {x}{\log \left (\frac {1}{4} x (1+\log (2))\right )}+9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2444
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {x+(9-x) \log \left (\frac {1}{4} (x+x \log (2))\right )}{\log \left (\frac {1}{4} (x+x \log (2))\right )}\right ) \left (-1+\log \left (\frac {1}{4} (x+x \log (2))\right )-\log ^2\left (\frac {1}{4} (x+x \log (2))\right )\right )}{\log ^2\left (\frac {1}{4} x (1+\log (2))\right )} \, dx\\ &=4 \operatorname {Subst}\left (\int \frac {e^{9-4 x+\frac {4 x}{\log (x (1+\log (2)))}} \left (-1+\log (x (1+\log (2)))-\log ^2(x (1+\log (2)))\right )}{\log ^2(x (1+\log (2)))} \, dx,x,\frac {x}{4}\right )\\ &=e^{9-x+\frac {x}{\log \left (\frac {1}{4} x (1+\log (2))\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 21, normalized size = 0.95 \begin {gather*} e^{9-x+\frac {x}{\log \left (\frac {1}{4} x (1+\log (2))\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 33, normalized size = 1.50 \begin {gather*} e^{\left (-\frac {{\left (x - 9\right )} \log \left (\frac {1}{4} \, x \log \relax (2) + \frac {1}{4} \, x\right ) - x}{\log \left (\frac {1}{4} \, x \log \relax (2) + \frac {1}{4} \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.11, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (-x + \frac {x}{\log \left (\frac {1}{4} \, x \log \relax (2) + \frac {1}{4} \, x\right )} + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.50
method | result | size |
norman | \({\mathrm e}^{\frac {\left (9-x \right ) \ln \left (\frac {x \ln \relax (2)}{4}+\frac {x}{4}\right )+x}{\ln \left (\frac {x \ln \relax (2)}{4}+\frac {x}{4}\right )}}\) | \(33\) |
risch | \({\mathrm e}^{-\frac {\ln \left (\frac {x \ln \relax (2)}{4}+\frac {x}{4}\right ) x -9 \ln \left (\frac {x \ln \relax (2)}{4}+\frac {x}{4}\right )-x}{\ln \left (\frac {x \ln \relax (2)}{4}+\frac {x}{4}\right )}}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 27, normalized size = 1.23 \begin {gather*} e^{\left (-x - \frac {x}{2 \, \log \relax (2) - \log \relax (x) - \log \left (\log \relax (2) + 1\right )} + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.37, size = 22, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^9\,{\mathrm {e}}^{\frac {x}{\ln \left (\frac {x}{4}+\frac {x\,\ln \relax (2)}{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 29, normalized size = 1.32 \begin {gather*} e^{\frac {x + \left (9 - x\right ) \log {\left (\frac {x \log {\relax (2 )}}{4} + \frac {x}{4} \right )}}{\log {\left (\frac {x \log {\relax (2 )}}{4} + \frac {x}{4} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________