Optimal. Leaf size=16 \[ \log \left (\left (-4+e^{2 e^{4+2 x}}\right )^4\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 18, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {12, 2282, 2247, 2246, 31} \begin {gather*} 4 \log \left (4-e^{2 e^{2 x+4}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 2246
Rule 2247
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=16 \int \frac {e^{4+2 e^{4+2 x}+2 x}}{-4+e^{2 e^{4+2 x}}} \, dx\\ &=8 \operatorname {Subst}\left (\int \frac {e^{4+2 e^4 x}}{-4+e^{2 e^4 x}} \, dx,x,e^{2 x}\right )\\ &=\left (8 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{2 e^4 x}}{-4+e^{2 e^4 x}} \, dx,x,e^{2 x}\right )\\ &=4 \operatorname {Subst}\left (\int \frac {1}{-4+x} \, dx,x,e^{2 e^{4+2 x}}\right )\\ &=4 \log \left (4-e^{2 e^{4+2 x}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 16, normalized size = 1.00 \begin {gather*} 4 \log \left (-4+e^{2 e^{4+2 x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 34, normalized size = 2.12 \begin {gather*} -8 \, x + 4 \, \log \left (e^{\left (2 \, x + e^{\left (2 \, x + \log \relax (2) + 4\right )} + \log \relax (2) + 4\right )} - 4 \, e^{\left (2 \, x + \log \relax (2) + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 15, normalized size = 0.94 \begin {gather*} 4 \, \log \left ({\left | e^{\left (2 \, e^{\left (2 \, x + 4\right )}\right )} - 4 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.94
method | result | size |
risch | \(4 \ln \left ({\mathrm e}^{2 \,{\mathrm e}^{2 x +4}}-4\right )\) | \(15\) |
derivativedivides | \(4 \ln \left ({\mathrm e}^{{\mathrm e}^{6} {\mathrm e}^{\ln \relax (2)+2 x -2}}-4\right )\) | \(20\) |
default | \(4 \ln \left ({\mathrm e}^{{\mathrm e}^{6} {\mathrm e}^{\ln \relax (2)+2 x -2}}-4\right )\) | \(20\) |
norman | \(4 \ln \left ({\mathrm e}^{{\mathrm e}^{6} {\mathrm e}^{\ln \relax (2)+2 x -2}}-4\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 14, normalized size = 0.88 \begin {gather*} 4 \, \log \left (e^{\left (2 \, e^{\left (2 \, x + 4\right )}\right )} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 14, normalized size = 0.88 \begin {gather*} 4\,\ln \left ({\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^4}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 1.06 \begin {gather*} 4 \log {\left (e^{2 e^{6} e^{2 x - 2}} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________