Optimal. Leaf size=22 \[ \log \left (\log \left (\frac {e^{e^4} (8-x)}{2+\frac {11 x}{10}}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 2504} \begin {gather*} \log \left (\log \left (\frac {10 e^{e^4} (8-x)}{11 x+20}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2504
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=108 \int \frac {1}{\left (-160-68 x+11 x^2\right ) \log \left (\frac {e^{e^4} (80-10 x)}{20+11 x}\right )} \, dx\\ &=\log \left (\log \left (\frac {10 e^{e^4} (8-x)}{20+11 x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 0.86 \begin {gather*} \log \left (\log \left (-\frac {10 e^{e^4} (-8+x)}{20+11 x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 17, normalized size = 0.77 \begin {gather*} \log \left (\log \left (-\frac {10 \, {\left (x - 8\right )} e^{\left (e^{4}\right )}}{11 \, x + 20}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 17, normalized size = 0.77 \begin {gather*} \log \left (e^{4} + \log \left (-\frac {10 \, {\left (x - 8\right )}}{11 \, x + 20}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 19, normalized size = 0.86
method | result | size |
norman | \(\ln \left (\ln \left (\frac {\left (-10 x +80\right ) {\mathrm e}^{{\mathrm e}^{4}}}{11 x +20}\right )\right )\) | \(19\) |
risch | \(\ln \left (\ln \left (\frac {\left (-10 x +80\right ) {\mathrm e}^{{\mathrm e}^{4}}}{11 x +20}\right )\right )\) | \(19\) |
derivativedivides | \(\ln \left (\ln \left (-\frac {10 \,{\mathrm e}^{{\mathrm e}^{4}}}{11}+\frac {1080 \,{\mathrm e}^{{\mathrm e}^{4}}}{11 \left (11 x +20\right )}\right )\right )\) | \(21\) |
default | \(\ln \left (\ln \left (-\frac {10 \,{\mathrm e}^{{\mathrm e}^{4}}}{11}+\frac {1080 \,{\mathrm e}^{{\mathrm e}^{4}}}{11 \left (11 x +20\right )}\right )\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.62, size = 29, normalized size = 1.32 \begin {gather*} \log \left (-i \, \pi - e^{4} - \log \relax (5) - \log \relax (2) + \log \left (11 \, x + 20\right ) - \log \left (x - 8\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.20, size = 19, normalized size = 0.86 \begin {gather*} \ln \left ({\mathrm {e}}^4+\ln \left (-\frac {10\,x-80}{11\,x+20}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.77 \begin {gather*} \log {\left (\log {\left (\frac {\left (80 - 10 x\right ) e^{e^{4}}}{11 x + 20} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________