Optimal. Leaf size=36 \[ -2 x-x^2+4 \left (x+\log \left (\frac {x-\log (5)}{5 \left (-1-e^x-x\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4-2 x+2 x^3+\left (-2-2 x^2\right ) \log (5)+e^x \left (-4+2 x+2 x^2+(-2-2 x) \log (5)\right )}{-x-x^2+(1+x) \log (5)+e^x (-x+\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+2 x-2 x^3-\left (-2-2 x^2\right ) \log (5)-e^x \left (-4+2 x+2 x^2+(-2-2 x) \log (5)\right )}{\left (1+e^x+x\right ) (x-\log (5))} \, dx\\ &=\int \left (\frac {4 x}{1+e^x+x}+\frac {4-2 x^2-x (2-\log (25))+\log (25)}{x-\log (5)}\right ) \, dx\\ &=4 \int \frac {x}{1+e^x+x} \, dx+\int \frac {4-2 x^2-x (2-\log (25))+\log (25)}{x-\log (5)} \, dx\\ &=4 \int \frac {x}{1+e^x+x} \, dx+\int \left (-2-2 x+\frac {4-2 \log ^2(5)+\log (5) \log (25)}{x-\log (5)}\right ) \, dx\\ &=-2 x-x^2+\left (4-2 \log ^2(5)+\log (5) \log (25)\right ) \log (x-\log (5))+4 \int \frac {x}{1+e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 29, normalized size = 0.81 \begin {gather*} 2 \left (x-\frac {x^2}{2}-2 \log \left (1+e^x+x\right )+2 \log (x-\log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 26, normalized size = 0.72 \begin {gather*} -x^{2} + 2 \, x - 4 \, \log \left (x + e^{x} + 1\right ) + 4 \, \log \left (x - \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 0.72 \begin {gather*} -x^{2} + 2 \, x - 4 \, \log \left (x + e^{x} + 1\right ) + 4 \, \log \left (x - \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 27, normalized size = 0.75
method | result | size |
norman | \(-x^{2}+2 x +4 \ln \left (\ln \relax (5)-x \right )-4 \ln \left ({\mathrm e}^{x}+1+x \right )\) | \(27\) |
risch | \(-x^{2}+2 x +4 \ln \left (-\ln \relax (5)+x \right )-4 \ln \left ({\mathrm e}^{x}+1+x \right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 26, normalized size = 0.72 \begin {gather*} -x^{2} + 2 \, x - 4 \, \log \left (x + e^{x} + 1\right ) + 4 \, \log \left (x - \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 26, normalized size = 0.72 \begin {gather*} 2\,x+4\,\ln \left (x-\ln \relax (5)\right )-4\,\ln \left (x+{\mathrm {e}}^x+1\right )-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 0.67 \begin {gather*} - x^{2} + 2 x + 4 \log {\left (x - \log {\relax (5 )} \right )} - 4 \log {\left (x + e^{x} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________