Optimal. Leaf size=25 \[ x \log \left (\log \left (-\frac {2}{x}+\frac {4-\frac {1}{x}}{-4+x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-28+13 x^2+8 x^3-2 x^4+\left (28+16 x-15 x^2-4 x^3+2 x^4\right ) \log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right ) \log \left (\log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right )\right )}{\left (28+16 x-15 x^2-4 x^3+2 x^4\right ) \log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-28+13 x^2+8 x^3-2 x^4+\left (28+16 x-15 x^2-4 x^3+2 x^4\right ) \log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right ) \log \left (\log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right )\right )}{\left (28+16 x-15 x^2-4 x^3+2 x^4\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx\\ &=\int \left (-\frac {28}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {13 x^2}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {8 x^3}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}-\frac {2 x^4}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right )\right ) \, dx\\ &=-\left (2 \int \frac {x^4}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx\right )+8 \int \frac {x^3}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+13 \int \frac {x^2}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-28 \int \frac {1}{(-2+x) (2+x) \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right ) \, dx\\ &=-\left (2 \int \left (\frac {1}{2 \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}-\frac {4}{7 (-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}-\frac {4}{9 (2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {497+508 x}{126 \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx\right )+8 \int \left (-\frac {2}{7 (-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {2}{9 (2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {112+71 x}{63 \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx+13 \int \left (-\frac {1}{7 (-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}-\frac {1}{9 (2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {7+32 x}{63 \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx-28 \int \left (-\frac {1}{28 (-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}-\frac {1}{36 (2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {2 (-7+4 x)}{63 \left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx+\int \log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right ) \, dx\\ &=-\left (\frac {1}{63} \int \frac {497+508 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx\right )+\frac {8}{63} \int \frac {112+71 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {13}{63} \int \frac {7+32 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {7}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {8}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {8}{9} \int \frac {-7+4 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {8}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {16}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {16}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\int \frac {1}{\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right ) \, dx\\ &=-\left (\frac {1}{63} \int \left (\frac {497}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {508 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx\right )+\frac {8}{63} \int \left (\frac {112}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {71 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx+\frac {13}{63} \int \left (\frac {7}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {32 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx+\frac {7}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {8}{9} \int \left (-\frac {7}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}+\frac {4 x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )}\right ) \, dx+\frac {8}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {8}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {16}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {16}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\int \frac {1}{\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right ) \, dx\\ &=\frac {7}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {8}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {8}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {13}{9} \int \frac {1}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {16}{9} \int \frac {1}{(2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {13}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {16}{7} \int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {32}{9} \int \frac {x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {56}{9} \int \frac {1}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {416}{63} \int \frac {x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {71}{9} \int \frac {1}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\frac {508}{63} \int \frac {x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {568}{63} \int \frac {x}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\frac {128}{9} \int \frac {1}{\left (-7-4 x+2 x^2\right ) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx-\int \frac {1}{\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \frac {1}{(-2+x) \log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )} \, dx+\int \log \left (\log \left (\frac {7+4 x-2 x^2}{x \left (-4+x^2\right )}\right )\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 24, normalized size = 0.96 \begin {gather*} x \log \left (\log \left (\frac {7+4 x-2 x^2}{-4 x+x^3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.34, size = 25, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (-\frac {2 \, x^{2} - 4 \, x - 7}{x^{3} - 4 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.88, size = 25, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (-\frac {2 \, x^{2} - 4 \, x - 7}{x^{3} - 4 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (2 x^{4}-4 x^{3}-15 x^{2}+16 x +28\right ) \ln \left (\frac {-2 x^{2}+4 x +7}{x^{3}-4 x}\right ) \ln \left (\ln \left (\frac {-2 x^{2}+4 x +7}{x^{3}-4 x}\right )\right )-2 x^{4}+8 x^{3}+13 x^{2}-28}{\left (2 x^{4}-4 x^{3}-15 x^{2}+16 x +28\right ) \ln \left (\frac {-2 x^{2}+4 x +7}{x^{3}-4 x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 31, normalized size = 1.24 \begin {gather*} x \log \left (\log \left (-2 \, x^{2} + 4 \, x + 7\right ) - \log \left (x + 2\right ) - \log \left (x - 2\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.92, size = 27, normalized size = 1.08 \begin {gather*} x\,\ln \left (\ln \left (-\frac {-2\,x^2+4\,x+7}{4\,x-x^3}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.44, size = 46, normalized size = 1.84 \begin {gather*} \left (x - \frac {1}{15}\right ) \log {\left (\log {\left (\frac {- 2 x^{2} + 4 x + 7}{x^{3} - 4 x} \right )} \right )} + \frac {\log {\left (\log {\left (\frac {- 2 x^{2} + 4 x + 7}{x^{3} - 4 x} \right )} \right )}}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________