Optimal. Leaf size=28 \[ \frac {4}{x \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2+8 \log (x)+\left (4 x^2+4 \log (x)\right ) \log \left (x^2\right )+e^{\log ^2\left (x^2+\log (x)\right )} \left (-4 x^2+\left (-4-4 x^2\right ) \log (x)-4 \log ^2(x)+\left (-8-16 x^2\right ) \log (x) \log \left (x^2+\log (x)\right )\right )}{e^{2 \log ^2\left (x^2+\log (x)\right )} \left (x^4 \log ^2(x)+x^2 \log ^3(x)\right )+e^{\log ^2\left (x^2+\log (x)\right )} \left (-2 x^4 \log (x)-2 x^2 \log ^2(x)\right ) \log \left (x^2\right )+\left (x^4+x^2 \log (x)\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x^2+8 \log (x)+\left (4 x^2+4 \log (x)\right ) \log \left (x^2\right )+e^{\log ^2\left (x^2+\log (x)\right )} \left (-4 x^2+\left (-4-4 x^2\right ) \log (x)-4 \log ^2(x)+\left (-8-16 x^2\right ) \log (x) \log \left (x^2+\log (x)\right )\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (-\frac {4 \left (x^2+\log (x)+x^2 \log (x)+\log ^2(x)+2 \log (x) \log \left (x^2+\log (x)\right )+4 x^2 \log (x) \log \left (x^2+\log (x)\right )\right )}{x^2 \log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}-\frac {4 \left (-2 x^2 \log (x)-2 \log ^2(x)+x^2 \log \left (x^2\right )+\log (x) \log \left (x^2\right )+2 \log (x) \log \left (x^2\right ) \log \left (x^2+\log (x)\right )+4 x^2 \log (x) \log \left (x^2\right ) \log \left (x^2+\log (x)\right )\right )}{x^2 \log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {x^2+\log (x)+x^2 \log (x)+\log ^2(x)+2 \log (x) \log \left (x^2+\log (x)\right )+4 x^2 \log (x) \log \left (x^2+\log (x)\right )}{x^2 \log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx\right )-4 \int \frac {-2 x^2 \log (x)-2 \log ^2(x)+x^2 \log \left (x^2\right )+\log (x) \log \left (x^2\right )+2 \log (x) \log \left (x^2\right ) \log \left (x^2+\log (x)\right )+4 x^2 \log (x) \log \left (x^2\right ) \log \left (x^2+\log (x)\right )}{x^2 \log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx\\ &=-\left (4 \int \left (\frac {1}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}+\frac {1}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}+\frac {1}{\log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}+\frac {\log (x)}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}+\frac {4 \log \left (x^2+\log (x)\right )}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}+\frac {2 \log \left (x^2+\log (x)\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )}\right ) \, dx\right )-4 \int \frac {-2 \log ^2(x)+x^2 \log \left (x^2\right )+\log (x) \left (-2 x^2+\log \left (x^2\right ) \left (1+\left (2+4 x^2\right ) \log \left (x^2+\log (x)\right )\right )\right )}{x^2 \log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx\\ &=-\left (4 \int \frac {1}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx\right )-4 \int \frac {1}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \frac {1}{\log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \frac {\log (x)}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \left (-\frac {2}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}-\frac {2 \log (x)}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}+\frac {\log \left (x^2\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}+\frac {\log \left (x^2\right )}{\log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}+\frac {4 \log \left (x^2\right ) \log \left (x^2+\log (x)\right )}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}+\frac {2 \log \left (x^2\right ) \log \left (x^2+\log (x)\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2}\right ) \, dx-8 \int \frac {\log \left (x^2+\log (x)\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-16 \int \frac {\log \left (x^2+\log (x)\right )}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx\\ &=-\left (4 \int \frac {1}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx\right )-4 \int \frac {1}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \frac {1}{\log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \frac {\log (x)}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-4 \int \frac {\log \left (x^2\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx-4 \int \frac {\log \left (x^2\right )}{\log (x) \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx+8 \int \frac {1}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx+8 \int \frac {\log (x)}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx-8 \int \frac {\log \left (x^2+\log (x)\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-8 \int \frac {\log \left (x^2\right ) \log \left (x^2+\log (x)\right )}{x^2 \left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx-16 \int \frac {\log \left (x^2+\log (x)\right )}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \, dx-16 \int \frac {\log \left (x^2\right ) \log \left (x^2+\log (x)\right )}{\left (x^2+\log (x)\right ) \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 28, normalized size = 1.00 \begin {gather*} \frac {4}{x \left (e^{\log ^2\left (x^2+\log (x)\right )} \log (x)-\log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 24, normalized size = 0.86 \begin {gather*} \frac {4}{x e^{\left (\log \left (x^{2} + \log \relax (x)\right )^{2}\right )} \log \relax (x) - 2 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 24, normalized size = 0.86 \begin {gather*} \frac {4}{x e^{\left (\log \left (x^{2} + \log \relax (x)\right )^{2}\right )} \log \relax (x) - 2 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 74, normalized size = 2.64
method | result | size |
risch | \(-\frac {8 i}{x \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \relax (x ) {\mathrm e}^{\ln \left (\ln \relax (x )+x^{2}\right )^{2}}+4 i \ln \relax (x )\right )}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 0.86 \begin {gather*} \frac {4}{x e^{\left (\log \left (x^{2} + \log \relax (x)\right )^{2}\right )} \log \relax (x) - 2 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.07, size = 310, normalized size = 11.07 \begin {gather*} \frac {4\,\left (2\,x^2\,\ln \relax (x)+2\,{\ln \relax (x)}^2\right )\,{\left (x\,\ln \relax (x)+x^3\right )}^2-4\,\ln \left (x^2\right )\,{\left (x\,\ln \relax (x)+x^3\right )}^2\,\left (\ln \relax (x)+2\,\ln \left (\ln \relax (x)+x^2\right )\,\ln \relax (x)+x^2+4\,x^2\,\ln \left (\ln \relax (x)+x^2\right )\,\ln \relax (x)\right )}{x^2\,\left (\ln \relax (x)+x^2\right )\,\left (\ln \left (x^2\right )-{\mathrm {e}}^{{\ln \left (\ln \relax (x)+x^2\right )}^2}\,\ln \relax (x)\right )\,\left (x^5\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+x\,{\ln \relax (x)}^2\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+2\,x^3\,\ln \relax (x)\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+4\,x^3\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^2+8\,x^3\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^3+8\,x^5\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^2+4\,x\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^3+2\,x\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^2\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+2\,x^3\,\ln \left (\ln \relax (x)+x^2\right )\,\ln \relax (x)\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+4\,x^5\,\ln \left (\ln \relax (x)+x^2\right )\,\ln \relax (x)\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+4\,x^3\,\ln \left (\ln \relax (x)+x^2\right )\,{\ln \relax (x)}^2\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 24, normalized size = 0.86 \begin {gather*} \frac {4}{x e^{\log {\left (x^{2} + \log {\relax (x )} \right )}^{2}} \log {\relax (x )} - 2 x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________