Optimal. Leaf size=28 \[ e^x \left (x^2-\log \left (\frac {2}{5 \left (8+\frac {x}{-2+x^2}\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 41.44, antiderivative size = 983, normalized size of antiderivative = 35.11, number of steps used = 191, number of rules used = 12, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {6742, 6688, 6725, 2178, 2194, 2269, 2176, 2196, 2554, 2270, 6728, 2268}
result too large to display
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2178
Rule 2194
Rule 2196
Rule 2268
Rule 2269
Rule 2270
Rule 2554
Rule 6688
Rule 6725
Rule 6728
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x x \left (-2+64 x+27 x^2-66 x^3-30 x^4+17 x^5+8 x^6-32 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+2 x \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+32 x^2 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-x^3 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-8 x^4 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{2 \left (-2+x^2\right )}-\frac {e^x (1+8 x) \left (-2+64 x+27 x^2-66 x^3-30 x^4+17 x^5+8 x^6-32 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+2 x \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+32 x^2 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-x^3 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-8 x^4 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{2 \left (-16+x+8 x^2\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x x \left (-2+64 x+27 x^2-66 x^3-30 x^4+17 x^5+8 x^6-32 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+2 x \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+32 x^2 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-x^3 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-8 x^4 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{-2+x^2} \, dx-\frac {1}{2} \int \frac {e^x (1+8 x) \left (-2+64 x+27 x^2-66 x^3-30 x^4+17 x^5+8 x^6-32 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+2 x \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )+32 x^2 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-x^3 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )-8 x^4 \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{-16+x+8 x^2} \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^x (1+8 x) \left (2-64 x-27 x^2+66 x^3+30 x^4-17 x^5-8 x^6+\left (32-2 x-32 x^2+x^3+8 x^4\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{16-x-8 x^2} \, dx\right )+\frac {1}{2} \int \frac {e^x x \left (2-64 x-27 x^2+66 x^3+30 x^4-17 x^5-8 x^6+\left (32-2 x-32 x^2+x^3+8 x^4\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right )}{2-x^2} \, dx\\ &=-\left (\frac {1}{2} \int \left (-\frac {2 e^x (1+8 x)}{-16+x+8 x^2}+\frac {64 e^x x (1+8 x)}{-16+x+8 x^2}+\frac {27 e^x x^2 (1+8 x)}{-16+x+8 x^2}-\frac {66 e^x x^3 (1+8 x)}{-16+x+8 x^2}-\frac {30 e^x x^4 (1+8 x)}{-16+x+8 x^2}+\frac {17 e^x x^5 (1+8 x)}{-16+x+8 x^2}+\frac {8 e^x x^6 (1+8 x)}{-16+x+8 x^2}-e^x (1+8 x) \left (-2+x^2\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right ) \, dx\right )+\frac {1}{2} \int \left (-\frac {2 e^x x}{-2+x^2}+\frac {64 e^x x^2}{-2+x^2}+\frac {27 e^x x^3}{-2+x^2}-\frac {66 e^x x^4}{-2+x^2}-\frac {30 e^x x^5}{-2+x^2}+\frac {17 e^x x^6}{-2+x^2}+\frac {8 e^x x^7}{-2+x^2}-e^x x \left (-16+x+8 x^2\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right ) \, dx\\ &=\frac {1}{2} \int e^x (1+8 x) \left (-2+x^2\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right ) \, dx-\frac {1}{2} \int e^x x \left (-16+x+8 x^2\right ) \log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right ) \, dx+4 \int \frac {e^x x^7}{-2+x^2} \, dx-4 \int \frac {e^x x^6 (1+8 x)}{-16+x+8 x^2} \, dx+\frac {17}{2} \int \frac {e^x x^6}{-2+x^2} \, dx-\frac {17}{2} \int \frac {e^x x^5 (1+8 x)}{-16+x+8 x^2} \, dx+\frac {27}{2} \int \frac {e^x x^3}{-2+x^2} \, dx-\frac {27}{2} \int \frac {e^x x^2 (1+8 x)}{-16+x+8 x^2} \, dx-15 \int \frac {e^x x^5}{-2+x^2} \, dx+15 \int \frac {e^x x^4 (1+8 x)}{-16+x+8 x^2} \, dx+32 \int \frac {e^x x^2}{-2+x^2} \, dx-32 \int \frac {e^x x (1+8 x)}{-16+x+8 x^2} \, dx-33 \int \frac {e^x x^4}{-2+x^2} \, dx+33 \int \frac {e^x x^3 (1+8 x)}{-16+x+8 x^2} \, dx-\int \frac {e^x x}{-2+x^2} \, dx+\int \frac {e^x (1+8 x)}{-16+x+8 x^2} \, dx\\ &=-e^x \log \left (\frac {2 \left (2-x^2\right )}{5 \left (16-x-8 x^2\right )}\right )-\frac {1}{2} \int \frac {e^x \left (2+x^2\right ) \left (-32+30 x-23 x^2+8 x^3\right )}{\left (16-x-8 x^2\right ) \left (2-x^2\right )} \, dx+\frac {1}{2} \int \frac {e^x \left (2+x^2\right ) \left (-30+30 x-23 x^2+8 x^3\right )}{\left (16-x-8 x^2\right ) \left (2-x^2\right )} \, dx+4 \int \left (4 e^x x+2 e^x x^3+e^x x^5+\frac {8 e^x x}{-2+x^2}\right ) \, dx-4 \int \left (-\frac {257 e^x}{256}+\frac {129 e^x x}{32}-\frac {e^x x^2}{4}+2 e^x x^3+e^x x^5-\frac {e^x (4112-16769 x)}{256 \left (-16+x+8 x^2\right )}\right ) \, dx+\frac {17}{2} \int \left (4 e^x+2 e^x x^2+e^x x^4+\frac {8 e^x}{-2+x^2}\right ) \, dx-\frac {17}{2} \int \left (\frac {129 e^x}{32}-\frac {e^x x}{4}+2 e^x x^2+e^x x^4+\frac {e^x (2064-257 x)}{32 \left (-16+x+8 x^2\right )}\right ) \, dx+\frac {27}{2} \int \left (e^x x+\frac {2 e^x x}{-2+x^2}\right ) \, dx-\frac {27}{2} \int \left (e^x x+\frac {16 e^x x}{-16+x+8 x^2}\right ) \, dx-15 \int \left (2 e^x x+e^x x^3+\frac {4 e^x x}{-2+x^2}\right ) \, dx+15 \int \left (-\frac {e^x}{4}+2 e^x x+e^x x^3-\frac {e^x (16-129 x)}{4 \left (-16+x+8 x^2\right )}\right ) \, dx+32 \int \left (e^x+\frac {2 e^x}{-2+x^2}\right ) \, dx-32 \int \left (e^x+\frac {16 e^x}{-16+x+8 x^2}\right ) \, dx-33 \int \left (2 e^x+e^x x^2+\frac {4 e^x}{-2+x^2}\right ) \, dx+33 \int \left (2 e^x+e^x x^2+\frac {2 e^x (16-x)}{-16+x+8 x^2}\right ) \, dx-\int \left (-\frac {e^x}{2 \left (\sqrt {2}-x\right )}+\frac {e^x}{2 \left (\sqrt {2}+x\right )}\right ) \, dx+\int \left (\frac {\left (8+\frac {8}{3 \sqrt {57}}\right ) e^x}{1-3 \sqrt {57}+16 x}+\frac {\left (8-\frac {8}{3 \sqrt {57}}\right ) e^x}{1+3 \sqrt {57}+16 x}\right ) \, dx\\ &=-e^x \log \left (\frac {2 \left (2-x^2\right )}{5 \left (16-x-8 x^2\right )}\right )+\frac {1}{64} \int \frac {e^x (4112-16769 x)}{-16+x+8 x^2} \, dx-\frac {17}{64} \int \frac {e^x (2064-257 x)}{-16+x+8 x^2} \, dx+\frac {1}{2} \int \frac {e^x}{\sqrt {2}-x} \, dx-\frac {1}{2} \int \frac {e^x}{\sqrt {2}+x} \, dx-\frac {1}{2} \int \left (-3 e^x+e^x x-\frac {4 e^x (-46+39 x)}{-2+x^2}+\frac {3 e^x (-496+443 x)}{-16+x+8 x^2}\right ) \, dx+\frac {1}{2} \int \left (-3 e^x+e^x x-\frac {8 e^x (-23+19 x)}{-2+x^2}+\frac {e^x (-1490+1297 x)}{-16+x+8 x^2}\right ) \, dx+\frac {17}{8} \int e^x x \, dx-\frac {15 \int e^x \, dx}{4}-\frac {15}{4} \int \frac {e^x (16-129 x)}{-16+x+8 x^2} \, dx+\frac {257 \int e^x \, dx}{64}+16 \int e^x x \, dx-\frac {129}{8} \int e^x x \, dx+27 \int \frac {e^x x}{-2+x^2} \, dx+32 \int \frac {e^x x}{-2+x^2} \, dx+34 \int e^x \, dx-\frac {2193 \int e^x \, dx}{64}-60 \int \frac {e^x x}{-2+x^2} \, dx+64 \int \frac {e^x}{-2+x^2} \, dx+66 \int \frac {e^x (16-x)}{-16+x+8 x^2} \, dx+68 \int \frac {e^x}{-2+x^2} \, dx-132 \int \frac {e^x}{-2+x^2} \, dx-216 \int \frac {e^x x}{-16+x+8 x^2} \, dx-512 \int \frac {e^x}{-16+x+8 x^2} \, dx+\frac {1}{171} \left (8 \left (171-\sqrt {57}\right )\right ) \int \frac {e^x}{1+3 \sqrt {57}+16 x} \, dx+\frac {1}{171} \left (8 \left (171+\sqrt {57}\right )\right ) \int \frac {e^x}{1-3 \sqrt {57}+16 x} \, dx+\int e^x x^2 \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 30, normalized size = 1.07 \begin {gather*} e^x \left (x^2-\log \left (\frac {2 \left (-2+x^2\right )}{5 \left (-16+x+8 x^2\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 29, normalized size = 1.04 \begin {gather*} x^{2} e^{x} - e^{x} \log \left (\frac {2 \, {\left (x^{2} - 2\right )}}{5 \, {\left (8 \, x^{2} + x - 16\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 29, normalized size = 1.04 \begin {gather*} x^{2} e^{x} - e^{x} \log \left (\frac {2 \, {\left (x^{2} - 2\right )}}{5 \, {\left (8 \, x^{2} + x - 16\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 193, normalized size = 6.89
method | result | size |
risch | \({\mathrm e}^{x} \ln \left (x^{2}+\frac {1}{8} x -2\right )-{\mathrm e}^{x} \ln \left (x^{2}-2\right )+\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (\frac {i}{x^{2}+\frac {1}{8} x -2}\right ) \mathrm {csgn}\left (i \left (x^{2}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-2\right )}{x^{2}+\frac {1}{8} x -2}\right )}{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (\frac {i}{x^{2}+\frac {1}{8} x -2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-2\right )}{x^{2}+\frac {1}{8} x -2}\right )^{2}}{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i \left (x^{2}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-2\right )}{x^{2}+\frac {1}{8} x -2}\right )^{2}}{2}+\frac {i {\mathrm e}^{x} \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-2\right )}{x^{2}+\frac {1}{8} x -2}\right )^{3}}{2}+{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{x} \ln \relax (2)+{\mathrm e}^{x} \ln \relax (5)\) | \(193\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 36, normalized size = 1.29 \begin {gather*} {\left (x^{2} + \log \relax (5) - \log \relax (2)\right )} e^{x} + e^{x} \log \left (8 \, x^{2} + x - 16\right ) - e^{x} \log \left (x^{2} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 31, normalized size = 1.11 \begin {gather*} -{\mathrm {e}}^x\,\left (\ln \left (\frac {2\,x^2-4}{40\,x^2+5\,x-80}\right )-x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 24, normalized size = 0.86 \begin {gather*} \left (x^{2} - \log {\left (\frac {2 x^{2} - 4}{40 x^{2} + 5 x - 80} \right )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________