Optimal. Leaf size=27 \[ \frac {2 e^{\frac {\left (e^x+x\right )^2}{x^2}} (3-x)}{(5+3 x)^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 133, normalized size of antiderivative = 4.93, number of steps used = 1, number of rules used = 1, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {2288} \begin {gather*} -\frac {2 e^{\frac {x^2+2 e^x x+e^{2 x}}{x^2}} \left (e^{2 x} \left (3 x^3-7 x^2-11 x+15\right )+e^x \left (3 x^4-7 x^3-11 x^2+15 x\right )\right )}{\left (27 x^6+135 x^5+225 x^4+125 x^3\right ) \left (\frac {e^x x+x+e^x+e^{2 x}}{x^2}-\frac {x^2+2 e^x x+e^{2 x}}{x^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {2 e^{\frac {e^{2 x}+2 e^x x+x^2}{x^2}} \left (e^{2 x} \left (15-11 x-7 x^2+3 x^3\right )+e^x \left (15 x-11 x^2-7 x^3+3 x^4\right )\right )}{\left (125 x^3+225 x^4+135 x^5+27 x^6\right ) \left (\frac {e^x+e^{2 x}+x+e^x x}{x^2}-\frac {e^{2 x}+2 e^x x+x^2}{x^3}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 25, normalized size = 0.93 \begin {gather*} -\frac {2 e^{\frac {\left (e^x+x\right )^2}{x^2}} (-3+x)}{(5+3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 35, normalized size = 1.30 \begin {gather*} -\frac {2 \, {\left (x - 3\right )} e^{\left (\frac {x^{2} + 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right )}}{9 \, x^{2} + 30 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (3 \, x^{4} - 23 \, x^{3} - 2 \, {\left (3 \, x^{3} - 7 \, x^{2} - 11 \, x + 15\right )} e^{\left (2 \, x\right )} - 2 \, {\left (3 \, x^{4} - 7 \, x^{3} - 11 \, x^{2} + 15 \, x\right )} e^{x}\right )} e^{\left (\frac {x^{2} + 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right )}}{27 \, x^{6} + 135 \, x^{5} + 225 \, x^{4} + 125 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.33
method | result | size |
risch | \(-\frac {2 \left (x -3\right ) {\mathrm e}^{\frac {{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x +x^{2}}{x^{2}}}}{9 x^{2}+30 x +25}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 40, normalized size = 1.48 \begin {gather*} -\frac {2 \, {\left (x e - 3 \, e\right )} e^{\left (\frac {2 \, e^{x}}{x} + \frac {e^{\left (2 \, x\right )}}{x^{2}}\right )}}{9 \, x^{2} + 30 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.49, size = 31, normalized size = 1.15 \begin {gather*} -\frac {2\,\mathrm {e}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^x}{x}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{x^2}}\,\left (x-3\right )}{{\left (3\,x+5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 34, normalized size = 1.26 \begin {gather*} \frac {\left (6 - 2 x\right ) e^{\frac {x^{2} + 2 x e^{x} + e^{2 x}}{x^{2}}}}{9 x^{2} + 30 x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________