Optimal. Leaf size=16 \[ e^3 \left (4+e^{2 e^{2 x}}\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 1.25, number of steps used = 2, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {2288} \begin {gather*} e^{2 e^{2 x}+3} x+4 e^3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 e^3 x+\int e^{2 e^{2 x}} \left (e^3+4 e^{3+2 x} x\right ) \, dx\\ &=4 e^3 x+e^{3+2 e^{2 x}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.19 \begin {gather*} e^3 \left (4 x+e^{2 e^{2 x}} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 17, normalized size = 1.06 \begin {gather*} 4 \, x e^{3} + x e^{\left (2 \, e^{\left (2 \, x\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 17, normalized size = 1.06 \begin {gather*} 4 \, x e^{3} + x e^{\left (2 \, e^{\left (2 \, x\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 1.12
method | result | size |
default | \(x \,{\mathrm e}^{3} {\mathrm e}^{2 \,{\mathrm e}^{2 x}}+4 x \,{\mathrm e}^{3}\) | \(18\) |
norman | \(x \,{\mathrm e}^{3} {\mathrm e}^{2 \,{\mathrm e}^{2 x}}+4 x \,{\mathrm e}^{3}\) | \(18\) |
risch | \(x \,{\mathrm e}^{3+2 \,{\mathrm e}^{2 x}}+4 x \,{\mathrm e}^{3}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 4 \, x e^{3} + \frac {1}{2} \, {\rm Ei}\left (2 \, e^{\left (2 \, x\right )}\right ) e^{3} + x e^{\left (2 \, e^{\left (2 \, x\right )} + 3\right )} - \int e^{\left (2 \, e^{\left (2 \, x\right )} + 3\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 13, normalized size = 0.81 \begin {gather*} x\,{\mathrm {e}}^3\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 1.19 \begin {gather*} x e^{3} e^{2 e^{2 x}} + 4 x e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________