Optimal. Leaf size=32 \[ e^{e^{5 e^{e^{\frac {3}{x}+\frac {5+3 e^5+\frac {9}{x^2}}{x}}}}} \]
________________________________________________________________________________________
Rubi [F] time = 3.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right ) \left (-135-40 x^2-15 e^5 x^2\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right ) \left (-135+\left (-40-15 e^5\right ) x^2\right )}{x^4} \, dx\\ &=\int \left (-\frac {135 \exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right )}{x^4}-\frac {5 \exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right ) \left (8+3 e^5\right )}{x^2}\right ) \, dx\\ &=-\left (135 \int \frac {\exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right )}{x^4} \, dx\right )-\left (5 \left (8+3 e^5\right )\right ) \int \frac {\exp \left (e^{5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}}+5 e^{e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}}+e^{\frac {9+8 x^2+3 e^5 x^2}{x^3}}+\frac {9+8 x^2+3 e^5 x^2}{x^3}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 0.84 \begin {gather*} e^{e^{5 e^{e^{\frac {9}{x^3}+\frac {8+3 e^5}{x}}}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 157, normalized size = 4.91 \begin {gather*} e^{\left (\frac {x^{3} e^{\left (5 \, e^{\left (e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )}\right )}\right )} + x^{3} e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )} + 5 \, x^{3} e^{\left (e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )}\right )} + 3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}} - \frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}} - e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )} - 5 \, e^{\left (e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left (3 \, x^{2} e^{5} + 8 \, x^{2} + 27\right )} e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}} + e^{\left (5 \, e^{\left (e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )}\right )}\right )} + e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )} + 5 \, e^{\left (e^{\left (\frac {3 \, x^{2} e^{5} + 8 \, x^{2} + 9}{x^{3}}\right )}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 25, normalized size = 0.78
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{5 \,{\mathrm e}^{{\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{5}+8 x^{2}+9}{x^{3}}}}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.93, size = 24, normalized size = 0.75 \begin {gather*} e^{\left (e^{\left (5 \, e^{\left (e^{\left (\frac {3 \, e^{5}}{x} + \frac {8}{x} + \frac {9}{x^{3}}\right )}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.91, size = 26, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{5\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^5}{x}}\,{\mathrm {e}}^{8/x}\,{\mathrm {e}}^{\frac {9}{x^3}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.22, size = 26, normalized size = 0.81 \begin {gather*} e^{e^{5 e^{e^{\frac {8 x^{2} + 3 x^{2} e^{5} + 9}{x^{3}}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________