Optimal. Leaf size=27 \[ 6+\frac {4 \left (-\frac {12}{x-\left (e^{5+x}+x\right )^2}+\log (x)\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 3.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{20+4 x}+96 x+16 e^{15+3 x} x-140 x^2-8 x^3+4 x^4+e^{10+2 x} \left (-48-104 x+24 x^2\right )+e^{5+x} \left (-192 x-112 x^2+16 x^3\right )+\left (-4 e^{20+4 x}-16 e^{15+3 x} x-4 x^2+8 x^3-4 x^4+e^{10+2 x} \left (8 x-24 x^2\right )+e^{5+x} \left (16 x^2-16 x^3\right )\right ) \log (x)}{e^{20+4 x} x^2+4 e^{15+3 x} x^3+x^4-2 x^5+x^6+e^{10+2 x} \left (-2 x^3+6 x^4\right )+e^{5+x} \left (-4 x^4+4 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{4 (5+x)}+16 e^{3 (5+x)} x+16 e^{5+x} x \left (-12-7 x+x^2\right )+8 e^{2 (5+x)} \left (-6-13 x+3 x^2\right )+4 x \left (24-35 x-2 x^2+x^3\right )-4 \left (e^{2 (5+x)}+2 e^{5+x} x+(-1+x) x\right )^2 \log (x)}{x^2 \left (e^{2 (5+x)}+2 e^{5+x} x+(-1+x) x\right )^2} \, dx\\ &=\int \left (-\frac {48 (1+2 x)}{x^2 \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )}+\frac {48 \left (1-2 e^{5+x}-4 x+2 e^{5+x} x+2 x^2\right )}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}-\frac {4 (-1+\log (x))}{x^2}\right ) \, dx\\ &=-\left (4 \int \frac {-1+\log (x)}{x^2} \, dx\right )-48 \int \frac {1+2 x}{x^2 \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )} \, dx+48 \int \frac {1-2 e^{5+x}-4 x+2 e^{5+x} x+2 x^2}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx\\ &=\frac {4 \log (x)}{x}+48 \int \left (-\frac {4}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}+\frac {2 e^{5+x}}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}+\frac {1}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}-\frac {2 e^{5+x}}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}+\frac {2 x}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2}\right ) \, dx-48 \int \left (\frac {1}{x^2 \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )}+\frac {2}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )}\right ) \, dx\\ &=\frac {4 \log (x)}{x}+48 \int \frac {1}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx-48 \int \frac {1}{x^2 \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )} \, dx+96 \int \frac {e^{5+x}}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx-96 \int \frac {e^{5+x}}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx+96 \int \frac {x}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx-96 \int \frac {1}{x \left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )} \, dx-192 \int \frac {1}{\left (e^{10+2 x}-x+2 e^{5+x} x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 33, normalized size = 1.22 \begin {gather*} \frac {4 \left (\frac {12}{e^{2 (5+x)}+2 e^{5+x} x+(-1+x) x}+\log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 55, normalized size = 2.04 \begin {gather*} \frac {4 \, {\left ({\left (x^{2} + 2 \, x e^{\left (x + 5\right )} - x + e^{\left (2 \, x + 10\right )}\right )} \log \relax (x) + 12\right )}}{x^{3} + 2 \, x^{2} e^{\left (x + 5\right )} - x^{2} + x e^{\left (2 \, x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 284, normalized size = 10.52 \begin {gather*} \frac {4 \, {\left (2 \, x^{5} \log \relax (x) + 6 \, x^{4} e^{\left (x + 5\right )} \log \relax (x) + 2 \, x^{5} + 2 \, x^{4} e^{\left (x + 5\right )} - 12 \, x^{4} \log \relax (x) + 4 \, x^{3} e^{\left (2 \, x + 10\right )} \log \relax (x) - 18 \, x^{3} e^{\left (x + 5\right )} \log \relax (x) - 4 \, x^{4} - 6 \, x^{3} e^{\left (x + 5\right )} + 19 \, x^{3} \log \relax (x) - 12 \, x^{2} e^{\left (2 \, x + 10\right )} \log \relax (x) + 10 \, x^{2} e^{\left (x + 5\right )} \log \relax (x) - 23 \, x^{3} - 66 \, x^{2} e^{\left (x + 5\right )} - 11 \, x^{2} \log \relax (x) + 8 \, x e^{\left (2 \, x + 10\right )} \log \relax (x) - 94 \, x^{2} + 118 \, x e^{\left (x + 5\right )} + 2 \, x \log \relax (x) - e^{\left (2 \, x + 10\right )} \log \relax (x) + 131 \, x - 48 \, e^{\left (x + 5\right )} - 36\right )}}{4 \, x^{6} + 8 \, x^{5} e^{\left (x + 5\right )} - 16 \, x^{5} + 4 \, x^{4} e^{\left (2 \, x + 10\right )} - 24 \, x^{4} e^{\left (x + 5\right )} + 20 \, x^{4} - 12 \, x^{3} e^{\left (2 \, x + 10\right )} + 16 \, x^{3} e^{\left (x + 5\right )} - 9 \, x^{3} + 8 \, x^{2} e^{\left (2 \, x + 10\right )} - 2 \, x^{2} e^{\left (x + 5\right )} + x^{2} - x e^{\left (2 \, x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.33
method | result | size |
risch | \(\frac {4 \ln \relax (x )}{x}+\frac {48}{x \left ({\mathrm e}^{2 x +10}+2 x \,{\mathrm e}^{5+x}+x^{2}-x \right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 60, normalized size = 2.22 \begin {gather*} \frac {4 \, {\left (2 \, x e^{\left (x + 5\right )} \log \relax (x) + {\left (x^{2} - x\right )} \log \relax (x) + e^{\left (2 \, x + 10\right )} \log \relax (x) + 12\right )}}{x^{3} + 2 \, x^{2} e^{\left (x + 5\right )} - x^{2} + x e^{\left (2 \, x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{x+5}\,\left (-16\,x^3+112\,x^2+192\,x\right )-4\,{\mathrm {e}}^{4\,x+20}-96\,x+{\mathrm {e}}^{2\,x+10}\,\left (-24\,x^2+104\,x+48\right )-16\,x\,{\mathrm {e}}^{3\,x+15}+\ln \relax (x)\,\left (4\,{\mathrm {e}}^{4\,x+20}-{\mathrm {e}}^{2\,x+10}\,\left (8\,x-24\,x^2\right )-{\mathrm {e}}^{x+5}\,\left (16\,x^2-16\,x^3\right )+16\,x\,{\mathrm {e}}^{3\,x+15}+4\,x^2-8\,x^3+4\,x^4\right )+140\,x^2+8\,x^3-4\,x^4}{4\,x^3\,{\mathrm {e}}^{3\,x+15}-{\mathrm {e}}^{2\,x+10}\,\left (2\,x^3-6\,x^4\right )-{\mathrm {e}}^{x+5}\,\left (4\,x^4-4\,x^5\right )+x^2\,{\mathrm {e}}^{4\,x+20}+x^4-2\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 32, normalized size = 1.19 \begin {gather*} \frac {48}{x^{3} + 2 x^{2} e^{x + 5} - x^{2} + x e^{2 x + 10}} + \frac {4 \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________