Optimal. Leaf size=29 \[ x-\frac {e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}}}{2+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 3.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^x \left (2 x^2+4 x^3+2 x^4\right )+e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+e^{16} \left (2+4 x+2 x^2\right )+\left (2+4 x+2 x^2\right ) \log (4)\right )\right )}{2 x^2+4 x^3+2 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^x \left (2 x^2+4 x^3+2 x^4\right )+e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+e^{16} \left (2+4 x+2 x^2\right )+\left (2+4 x+2 x^2\right ) \log (4)\right )\right )}{x^2 \left (2+4 x+2 x^2\right )} \, dx\\ &=\int \frac {e^{-x} \left (e^x \left (2 x^2+4 x^3+2 x^4\right )+e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+e^{16} \left (2+4 x+2 x^2\right )+\left (2+4 x+2 x^2\right ) \log (4)\right )\right )}{2 x^2 (1+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{-x} \left (e^x \left (2 x^2+4 x^3+2 x^4\right )+e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+e^{16} \left (2+4 x+2 x^2\right )+\left (2+4 x+2 x^2\right ) \log (4)\right )\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{2} \int \left (2+\frac {e^{-x+\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+2 e^{16} (1+x)^2 \left (1+\frac {\log (4)}{e^{16}}\right )\right )}{x^2 (1+x)^2}\right ) \, dx\\ &=x+\frac {1}{2} \int \frac {e^{-x+\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^x x^2+2 e^{16} (1+x)^2 \left (1+\frac {\log (4)}{e^{16}}\right )\right )}{x^2 (1+x)^2} \, dx\\ &=x+\frac {1}{2} \int \left (\frac {e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}}}{(1+x)^2}+\frac {2 e^{-x+\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}} \left (e^{16}+\log (4)\right )}{x^2}\right ) \, dx\\ &=x+\frac {1}{2} \int \frac {e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}}}{(1+x)^2} \, dx+\left (e^{16}+\log (4)\right ) \int \frac {e^{-x+\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 29, normalized size = 1.00 \begin {gather*} x-\frac {e^{\frac {2 e^{-x} \left (e^{16}+\log (4)\right )}{x}}}{2 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 35, normalized size = 1.21 \begin {gather*} \frac {2 \, x^{2} + 2 \, x - e^{\left (\frac {2 \, {\left (e^{16} + 2 \, \log \relax (2)\right )} e^{\left (-x\right )}}{x}\right )}}{2 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} e^{x} + {\left (x^{2} e^{x} + 2 \, {\left (x^{2} + 2 \, x + 1\right )} e^{16} + 4 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (2)\right )} e^{\left (\frac {2 \, {\left (e^{16} + 2 \, \log \relax (2)\right )} e^{\left (-x\right )}}{x}\right )}\right )} e^{\left (-x\right )}}{2 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 27, normalized size = 0.93
method | result | size |
risch | \(x -\frac {{\mathrm e}^{\frac {2 \left (2 \ln \relax (2)+{\mathrm e}^{16}\right ) {\mathrm e}^{-x}}{x}}}{2 \left (x +1\right )}\) | \(27\) |
norman | \(\frac {\left ({\mathrm e}^{x} x^{3}-{\mathrm e}^{x} x -\frac {{\mathrm e}^{x} x \,{\mathrm e}^{\frac {2 \left (2 \ln \relax (2)+{\mathrm e}^{16}\right ) {\mathrm e}^{-x}}{x}}}{2}\right ) {\mathrm e}^{-x}}{x \left (x +1\right )}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x^{2} + x - 1}{x + 1} + \frac {1}{x + 1} + \frac {1}{2} \, \int \frac {{\left (2 \, x^{2} {\left (e^{16} + 2 \, \log \relax (2)\right )} + x^{2} e^{x} + 4 \, x {\left (e^{16} + 2 \, \log \relax (2)\right )} + 2 \, e^{16} + 4 \, \log \relax (2)\right )} e^{\left (-x + \frac {4 \, e^{\left (-x\right )} \log \relax (2)}{x} + \frac {2 \, e^{\left (-x + 16\right )}}{x}\right )}}{x^{4} + 2 \, x^{3} + x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^x\,\left (2\,x^4+4\,x^3+2\,x^2\right )+{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^{16}+2\,\ln \relax (2)\right )}{x}}\,\left (x^2\,{\mathrm {e}}^x+{\mathrm {e}}^{16}\,\left (2\,x^2+4\,x+2\right )+2\,\ln \relax (2)\,\left (2\,x^2+4\,x+2\right )\right )\right )}{2\,x^4+4\,x^3+2\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 22, normalized size = 0.76 \begin {gather*} x - \frac {e^{\frac {2 \left (2 \log {\relax (2 )} + e^{16}\right ) e^{- x}}{x}}}{2 x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________