Optimal. Leaf size=31 \[ \frac {4 e^{\frac {7 e^{\frac {e^6}{4}}}{3}+\frac {x}{5}} x}{1-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 54, normalized size of antiderivative = 1.74, number of steps used = 8, number of rules used = 6, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {27, 12, 2199, 2194, 2177, 2178} \begin {gather*} \frac {4 e^{\frac {1}{15} \left (3 x+35 e^{\frac {e^6}{4}}\right )}}{1-x}-4 e^{\frac {1}{15} \left (3 x+35 e^{\frac {e^6}{4}}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )} \left (20+4 x-4 x^2\right )}{5 (-1+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )} \left (20+4 x-4 x^2\right )}{(-1+x)^2} \, dx\\ &=\frac {1}{5} \int \left (-4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}+\frac {20 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{(-1+x)^2}-\frac {4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{-1+x}\right ) \, dx\\ &=-\left (\frac {4}{5} \int e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )} \, dx\right )-\frac {4}{5} \int \frac {e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{-1+x} \, dx+4 \int \frac {e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{(-1+x)^2} \, dx\\ &=-4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}+\frac {4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{1-x}-\frac {4}{5} e^{\frac {1}{5}+\frac {7 e^{\frac {e^6}{4}}}{3}} \text {Ei}\left (\frac {1}{5} (-1+x)\right )+\frac {4}{5} \int \frac {e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{-1+x} \, dx\\ &=-4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}+\frac {4 e^{\frac {1}{15} \left (35 e^{\frac {e^6}{4}}+3 x\right )}}{1-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 29, normalized size = 0.94 \begin {gather*} -\frac {4 e^{\frac {7 e^{\frac {e^6}{4}}}{3}+\frac {x}{5}} x}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 20, normalized size = 0.65 \begin {gather*} -\frac {4 \, x e^{\left (\frac {1}{5} \, x + \frac {7}{3} \, e^{\left (\frac {1}{4} \, e^{6}\right )}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.65 \begin {gather*} -\frac {4 \, x e^{\left (\frac {1}{5} \, x + \frac {7}{3} \, e^{\left (\frac {1}{4} \, e^{6}\right )}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 21, normalized size = 0.68
method | result | size |
risch | \(-\frac {4 x \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{x -1}\) | \(21\) |
gosper | \(-\frac {4 x \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{x -1}\) | \(23\) |
norman | \(-\frac {4 x \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{x -1}\) | \(23\) |
derivativedivides | \(\frac {12 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-3 x +3}-\frac {4 \,{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{5}+\frac {4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (35 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+3\right )}{5 \left (-3 x +3\right )}-180 \left (\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{675}+\frac {2}{375}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )-4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}-\frac {4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (1225 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}}+210 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+9\right )}{15 \left (-3 x +3\right )}+4 \left (\frac {49 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}}}{9}+\frac {28 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{5}+\frac {11}{25}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )-420 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-45 x +45}-\frac {{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{225}\right )-4900 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-45 x +45}-\frac {{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{225}\right )+4200 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (35 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+3\right )}{-675 x +675}-\left (\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{675}+\frac {2}{375}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )\right )\) | \(476\) |
default | \(\frac {12 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-3 x +3}-\frac {4 \,{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{5}+\frac {4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (35 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+3\right )}{5 \left (-3 x +3\right )}-180 \left (\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{675}+\frac {2}{375}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )-4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}-\frac {4 \,{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (1225 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}}+210 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+9\right )}{15 \left (-3 x +3\right )}+4 \left (\frac {49 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}}}{9}+\frac {28 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{5}+\frac {11}{25}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )-420 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-45 x +45}-\frac {{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{225}\right )-4900 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{2}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}}}{-45 x +45}-\frac {{\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )}{225}\right )+4200 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}} \left (\frac {{\mathrm e}^{\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}+\frac {x}{5}} \left (35 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}+3\right )}{-675 x +675}-\left (\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{675}+\frac {2}{375}\right ) {\mathrm e}^{\frac {1}{5}+\frac {7 \,{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}}}{3}} \expIntegralEi \left (1, -\frac {x}{5}+\frac {1}{5}\right )\right )\) | \(476\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {4 \, x e^{\left (\frac {1}{5} \, x + \frac {7}{3} \, e^{\left (\frac {1}{4} \, e^{6}\right )}\right )}}{x - 1} - \frac {4 \, e^{\left (\frac {7}{3} \, e^{\left (\frac {1}{4} \, e^{6}\right )} + \frac {1}{5}\right )} E_{2}\left (-\frac {1}{5} \, x + \frac {1}{5}\right )}{x - 1} - 4 \, \int \frac {e^{\left (\frac {1}{5} \, x + \frac {7}{3} \, e^{\left (\frac {1}{4} \, e^{6}\right )}\right )}}{x^{2} - 2 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.51, size = 22, normalized size = 0.71 \begin {gather*} -\frac {20\,x\,{\mathrm {e}}^{x/5}\,{\mathrm {e}}^{\frac {7\,{\mathrm {e}}^{\frac {{\mathrm {e}}^6}{4}}}{3}}}{5\,x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.71 \begin {gather*} - \frac {4 x e^{\frac {x}{5} + \frac {7 e^{\frac {e^{6}}{4}}}{3}}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________