Optimal. Leaf size=25 \[ x+\frac {1}{2} \left (x-\frac {20 \left (e^x+x\right )^2}{\log (-3+12 x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {80 e^{2 x}+160 e^x x+80 x^2+\left (e^{2 x} (40-160 x)+40 x-160 x^2+e^x \left (40-120 x-160 x^2\right )\right ) \log (-3+12 x)+(-3+12 x) \log ^2(-3+12 x)}{(-2+8 x) \log ^2(-3+12 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3}{2}+\frac {40 \left (e^x+x\right )^2}{(-1+4 x) \log ^2(-3+12 x)}-\frac {20 \left (1+e^x\right ) \left (e^x+x\right )}{\log (-3+12 x)}\right ) \, dx\\ &=\frac {3 x}{2}-20 \int \frac {\left (1+e^x\right ) \left (e^x+x\right )}{\log (-3+12 x)} \, dx+40 \int \frac {\left (e^x+x\right )^2}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-20 \int \left (\frac {e^{2 x}}{\log (-3+12 x)}+\frac {x}{\log (-3+12 x)}+\frac {e^x (1+x)}{\log (-3+12 x)}\right ) \, dx+40 \int \left (\frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)}+\frac {2 e^x x}{(-1+4 x) \log ^2(-3+12 x)}+\frac {x^2}{(-1+4 x) \log ^2(-3+12 x)}\right ) \, dx\\ &=\frac {3 x}{2}-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-20 \int \frac {x}{\log (-3+12 x)} \, dx-20 \int \frac {e^x (1+x)}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx+40 \int \frac {x^2}{(-1+4 x) \log ^2(-3+12 x)} \, dx+80 \int \frac {e^x x}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}+\frac {10}{3} \operatorname {Subst}\left (\int \frac {3 \left (\frac {1}{4}+\frac {x}{12}\right )^2}{x \log ^2(x)} \, dx,x,-3+12 x\right )-20 \int \left (\frac {1}{4 \log (-3+12 x)}+\frac {-3+12 x}{12 \log (-3+12 x)}\right ) \, dx-20 \int \left (\frac {5 e^x}{4 \log (-3+12 x)}+\frac {e^x (-3+12 x)}{12 \log (-3+12 x)}\right ) \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx+80 \int \left (\frac {e^x}{4 \log ^2(-3+12 x)}+\frac {e^x}{4 (-1+4 x) \log ^2(-3+12 x)}\right ) \, dx\\ &=\frac {3 x}{2}-\frac {5}{3} \int \frac {-3+12 x}{\log (-3+12 x)} \, dx-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx-5 \int \frac {1}{\log (-3+12 x)} \, dx+10 \operatorname {Subst}\left (\int \frac {\left (\frac {1}{4}+\frac {x}{12}\right )^2}{x \log ^2(x)} \, dx,x,-3+12 x\right )+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-\frac {5}{36} \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,-3+12 x\right )-\frac {5}{12} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-3+12 x\right )-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx+10 \operatorname {Subst}\left (\int \left (\frac {1}{24 \log ^2(x)}+\frac {1}{16 x \log ^2(x)}+\frac {x}{144 \log ^2(x)}\right ) \, dx,x,-3+12 x\right )+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-\frac {5}{12} \text {li}(-3+12 x)+\frac {5}{72} \operatorname {Subst}\left (\int \frac {x}{\log ^2(x)} \, dx,x,-3+12 x\right )-\frac {5}{36} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (-3+12 x)\right )+\frac {5}{12} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-3+12 x\right )+\frac {5}{8} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-3+12 x\right )-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-\frac {5}{36} \text {Ei}(2 \log (-3+12 x))+\frac {5 (1-4 x)}{4 \log (-3+12 x)}-\frac {5 (1-4 x)^2}{8 \log (-3+12 x)}-\frac {5}{12} \text {li}(-3+12 x)+\frac {5}{36} \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,-3+12 x\right )+\frac {5}{12} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-3+12 x\right )+\frac {5}{8} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-3+12 x)\right )-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-\frac {5}{36} \text {Ei}(2 \log (-3+12 x))-\frac {5}{8 \log (-3+12 x)}+\frac {5 (1-4 x)}{4 \log (-3+12 x)}-\frac {5 (1-4 x)^2}{8 \log (-3+12 x)}+\frac {5}{36} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (-3+12 x)\right )-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ &=\frac {3 x}{2}-\frac {5}{8 \log (-3+12 x)}+\frac {5 (1-4 x)}{4 \log (-3+12 x)}-\frac {5 (1-4 x)^2}{8 \log (-3+12 x)}-\frac {5}{3} \int \frac {e^x (-3+12 x)}{\log (-3+12 x)} \, dx+20 \int \frac {e^x}{\log ^2(-3+12 x)} \, dx+20 \int \frac {e^x}{(-1+4 x) \log ^2(-3+12 x)} \, dx-20 \int \frac {e^{2 x}}{\log (-3+12 x)} \, dx-25 \int \frac {e^x}{\log (-3+12 x)} \, dx+40 \int \frac {e^{2 x}}{(-1+4 x) \log ^2(-3+12 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 23, normalized size = 0.92 \begin {gather*} \frac {3 x}{2}-\frac {10 \left (e^x+x\right )^2}{\log (-3+12 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 36, normalized size = 1.44 \begin {gather*} -\frac {20 \, x^{2} + 40 \, x e^{x} - 3 \, x \log \left (12 \, x - 3\right ) + 20 \, e^{\left (2 \, x\right )}}{2 \, \log \left (12 \, x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 44, normalized size = 1.76 \begin {gather*} -\frac {20 \, x^{2} + 40 \, x e^{x} - 3 \, x \log \relax (3) - 3 \, x \log \left (4 \, x - 1\right ) + 20 \, e^{\left (2 \, x\right )}}{2 \, {\left (\log \relax (3) + \log \left (4 \, x - 1\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 1.12
method | result | size |
risch | \(\frac {3 x}{2}-\frac {10 \left ({\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x +x^{2}\right )}{\ln \left (12 x -3\right )}\) | \(28\) |
default | \(\frac {3 x}{2}-\frac {10 \,{\mathrm e}^{2 x}}{\ln \left (12 x -3\right )}-\frac {20 \,{\mathrm e}^{x} x}{\ln \left (12 x -3\right )}-\frac {5 \left (12 x -3\right )^{2}}{72 \ln \left (12 x -3\right )}-\frac {5 \left (12 x -3\right )}{12 \ln \left (12 x -3\right )}-\frac {5}{8 \ln \left (12 x -3\right )}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 44, normalized size = 1.76 \begin {gather*} -\frac {20 \, x^{2} + 40 \, x e^{x} - 3 \, x \log \relax (3) - 3 \, x \log \left (4 \, x - 1\right ) + 20 \, e^{\left (2 \, x\right )}}{2 \, {\left (\log \relax (3) + \log \left (4 \, x - 1\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.47, size = 31, normalized size = 1.24 \begin {gather*} \frac {3\,x}{2}-\frac {10\,{\mathrm {e}}^{2\,x}+20\,x\,{\mathrm {e}}^x+10\,x^2}{\ln \left (12\,x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 53, normalized size = 2.12 \begin {gather*} - \frac {10 x^{2}}{\log {\left (12 x - 3 \right )}} + \frac {3 x}{2} + \frac {- 20 x e^{x} \log {\left (12 x - 3 \right )} - 10 e^{2 x} \log {\left (12 x - 3 \right )}}{\log {\left (12 x - 3 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________