Optimal. Leaf size=36 \[ \frac {-2+\log (4)}{x \left (-2+\frac {\log \left (3 \left (-3-x+\frac {2+x-x^2}{x}\right )\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 26, normalized size of antiderivative = 0.72, number of steps used = 3, number of rules used = 3, integrand size = 110, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6688, 12, 6686} \begin {gather*} \frac {2-\log (4)}{2 x-\log \left (-6 x+\frac {6}{x}-6\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (1+2 x-x^2-2 x^3\right ) (-2+\log (4))}{x \left (1-x-x^2\right ) \left (2 x-\log \left (-6+\frac {6}{x}-6 x\right )\right )^2} \, dx\\ &=(-2+\log (4)) \int \frac {1+2 x-x^2-2 x^3}{x \left (1-x-x^2\right ) \left (2 x-\log \left (-6+\frac {6}{x}-6 x\right )\right )^2} \, dx\\ &=\frac {2-\log (4)}{2 x-\log \left (-6+\frac {6}{x}-6 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.61 \begin {gather*} \frac {-2+\log (4)}{-2 x+\log \left (-6+\frac {6}{x}-6 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 26, normalized size = 0.72 \begin {gather*} -\frac {2 \, {\left (\log \relax (2) - 1\right )}}{2 \, x - \log \left (-\frac {6 \, {\left (x^{2} + x - 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 31, normalized size = 0.86 \begin {gather*} -\frac {2 \, {\left (\log \relax (2) - 1\right )}}{2 \, x - \log \relax (2) - \log \left (-3 \, x^{2} - 3 \, x + 3\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 31, normalized size = 0.86
method | result | size |
norman | \(\frac {2-2 \ln \relax (2)}{2 x -\ln \left (\frac {-6 x^{2}-6 x +6}{x}\right )}\) | \(31\) |
default | \(\frac {2 \ln \relax (2)}{\ln \relax (6)-2 x +\ln \left (-\frac {x^{2}+x -1}{x}\right )}-\frac {2}{\ln \relax (6)-2 x +\ln \left (-\frac {x^{2}+x -1}{x}\right )}\) | \(48\) |
risch | \(-\frac {2 \ln \relax (2)}{2 x -\ln \left (\frac {-6 x^{2}-6 x +6}{x}\right )}+\frac {2}{2 x -\ln \left (\frac {-6 x^{2}-6 x +6}{x}\right )}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 30, normalized size = 0.83 \begin {gather*} \frac {2 \, {\left (\log \relax (2) - 1\right )}}{i \, \pi - 2 \, x + \log \relax (3) + \log \relax (2) + \log \left (x^{2} + x - 1\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.47, size = 43, normalized size = 1.19 \begin {gather*} -\frac {\ln \relax (4)+x\,\left (\ln \left (16\right )-4\right )-2}{\left (2\,x+1\right )\,\left (2\,x-\ln \left (-\frac {6\,x^2+6\,x-6}{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.61 \begin {gather*} \frac {-2 + 2 \log {\relax (2 )}}{- 2 x + \log {\left (\frac {- 6 x^{2} - 6 x + 6}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________