Optimal. Leaf size=29 \[ \frac {\sqrt {3} \sqrt {5-4 x \log \left (2+\log ^2\left (4+x^2\right )\right )}}{e^5} \]
________________________________________________________________________________________
Rubi [A] time = 0.89, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 137, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2274, 12, 6741, 6686} \begin {gather*} \frac {\sqrt {3} \sqrt {5-4 x \log \left (\log ^2\left (x^2+4\right )+2\right )}}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\sqrt {15-12 x \log \left (2+\log ^2\left (4+x^2\right )\right )} \left (8 x^2 \log \left (4+x^2\right )+\left (16+4 x^2+\left (8+2 x^2\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )\right )}{e^5 \left (-40-10 x^2+\left (-20-5 x^2\right ) \log ^2\left (4+x^2\right )+\left (32 x+8 x^3+\left (16 x+4 x^3\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )\right )} \, dx\\ &=\frac {\int \frac {\sqrt {15-12 x \log \left (2+\log ^2\left (4+x^2\right )\right )} \left (8 x^2 \log \left (4+x^2\right )+\left (16+4 x^2+\left (8+2 x^2\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )\right )}{-40-10 x^2+\left (-20-5 x^2\right ) \log ^2\left (4+x^2\right )+\left (32 x+8 x^3+\left (16 x+4 x^3\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )} \, dx}{e^5}\\ &=\frac {\int \frac {\sqrt {3} \left (-8 x^2 \log \left (4+x^2\right )-\left (16+4 x^2+\left (8+2 x^2\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )\right )}{\left (4+x^2\right ) \left (2+\log ^2\left (4+x^2\right )\right ) \sqrt {5-4 x \log \left (2+\log ^2\left (4+x^2\right )\right )}} \, dx}{e^5}\\ &=\frac {\sqrt {3} \int \frac {-8 x^2 \log \left (4+x^2\right )-\left (16+4 x^2+\left (8+2 x^2\right ) \log ^2\left (4+x^2\right )\right ) \log \left (2+\log ^2\left (4+x^2\right )\right )}{\left (4+x^2\right ) \left (2+\log ^2\left (4+x^2\right )\right ) \sqrt {5-4 x \log \left (2+\log ^2\left (4+x^2\right )\right )}} \, dx}{e^5}\\ &=\frac {\sqrt {3} \sqrt {5-4 x \log \left (2+\log ^2\left (4+x^2\right )\right )}}{e^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 1.00 \begin {gather*} \frac {\sqrt {3} \sqrt {5-4 x \log \left (2+\log ^2\left (4+x^2\right )\right )}}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 22, normalized size = 0.76 \begin {gather*} e^{\left (\frac {1}{2} \, \log \left (-12 \, x \log \left (\log \left (x^{2} + 4\right )^{2} + 2\right ) + 15\right ) - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (2 x^{2}+8\right ) \ln \left (x^{2}+4\right )^{2}+4 x^{2}+16\right ) \ln \left (\ln \left (x^{2}+4\right )^{2}+2\right )+8 x^{2} \ln \left (x^{2}+4\right )\right ) {\mathrm e}^{\frac {\ln \left (-12 x \ln \left (\ln \left (x^{2}+4\right )^{2}+2\right )+15\right )}{2}-5}}{\left (\left (4 x^{3}+16 x \right ) \ln \left (x^{2}+4\right )^{2}+8 x^{3}+32 x \right ) \ln \left (\ln \left (x^{2}+4\right )^{2}+2\right )+\left (-5 x^{2}-20\right ) \ln \left (x^{2}+4\right )^{2}-10 x^{2}-40}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.67, size = 25, normalized size = 0.86 \begin {gather*} i \, \sqrt {3} \sqrt {4 \, x \log \left (\log \left (x^{2} + 4\right )^{2} + 2\right ) - 5} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {\ln \left (15-12\,x\,\ln \left ({\ln \left (x^2+4\right )}^2+2\right )\right )}{2}-5}\,\left (\ln \left ({\ln \left (x^2+4\right )}^2+2\right )\,\left (4\,x^2+{\ln \left (x^2+4\right )}^2\,\left (2\,x^2+8\right )+16\right )+8\,x^2\,\ln \left (x^2+4\right )\right )}{10\,x^2-\ln \left ({\ln \left (x^2+4\right )}^2+2\right )\,\left (32\,x+{\ln \left (x^2+4\right )}^2\,\left (4\,x^3+16\,x\right )+8\,x^3\right )+{\ln \left (x^2+4\right )}^2\,\left (5\,x^2+20\right )+40} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________