Optimal. Leaf size=28 \[ \frac {x \log \left (5-x+x^2\right )}{\log \left (-3-x^2-5 x^2 \log (4)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-3 x+6 x^2-x^3+2 x^4+\left (-5 x^3+10 x^4\right ) \log (4)\right ) \log \left (-3-x^2-5 x^2 \log (4)\right )+\log \left (5-x+x^2\right ) \left (-10 x^2+2 x^3-2 x^4+\left (-50 x^2+10 x^3-10 x^4\right ) \log (4)+\left (15-3 x+8 x^2-x^3+x^4+\left (25 x^2-5 x^3+5 x^4\right ) \log (4)\right ) \log \left (-3-x^2-5 x^2 \log (4)\right )\right )}{\left (15-3 x+8 x^2-x^3+x^4+\left (25 x^2-5 x^3+5 x^4\right ) \log (4)\right ) \log ^2\left (-3-x^2-5 x^2 \log (4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {2 x^2 (1+5 \log (4)) \log \left (5-x+x^2\right )}{3+x^2 (1+5 \log (4))}+\frac {x (-1+2 x) \log \left (-3-x^2 (1+5 \log (4))\right )}{5-x+x^2}+\log \left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=\int \left (\frac {2 x^2 (-1-5 \log (4)) \log \left (5-x+x^2\right )}{\left (3+x^2 (1+5 \log (4))\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )}+\frac {-x+2 x^2+5 \log \left (5-x+x^2\right )-x \log \left (5-x+x^2\right )+x^2 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx\\ &=-\left ((2 (1+5 \log (4))) \int \frac {x^2 \log \left (5-x+x^2\right )}{\left (3+x^2 (1+5 \log (4))\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx\right )+\int \frac {-x+2 x^2+5 \log \left (5-x+x^2\right )-x \log \left (5-x+x^2\right )+x^2 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=-\left ((2 (1+5 \log (4))) \int \left (\frac {\log \left (5-x+x^2\right )}{(1+5 \log (4)) \log ^2\left (-3-x^2 (1+5 \log (4))\right )}+\frac {3 \log \left (5-x+x^2\right )}{(-1-5 \log (4)) \left (3+x^2 (1+5 \log (4))\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx\right )+\int \frac {x (-1+2 x)+\left (5-x+x^2\right ) \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=-\left (2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx\right )+6 \int \frac {\log \left (5-x+x^2\right )}{\left (3+x^2 (1+5 \log (4))\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \left (-\frac {x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {2 x^2}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {5 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}-\frac {x \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {x^2 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx\right )+2 \int \frac {x^2}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+5 \int \frac {\log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+6 \int \left (\frac {i \log \left (5-x+x^2\right )}{2 \sqrt {3 (1+5 \log (4))} \left (-x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )}+\frac {i \log \left (5-x+x^2\right )}{2 \sqrt {3 (1+5 \log (4))} \left (x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx-\int \frac {x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-\int \frac {x \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \frac {x^2 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=2 \int \left (\frac {1}{\log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {-5+x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx-2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+5 \int \left (\frac {2 i \log \left (5-x+x^2\right )}{\sqrt {19} \left (1+i \sqrt {19}-2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {2 i \log \left (5-x+x^2\right )}{\sqrt {19} \left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx-\int \left (\frac {1-\frac {i}{\sqrt {19}}}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {1+\frac {i}{\sqrt {19}}}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx-\int \left (\frac {\left (1-\frac {i}{\sqrt {19}}\right ) \log \left (5-x+x^2\right )}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {\left (1+\frac {i}{\sqrt {19}}\right ) \log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx+\int \left (\frac {\log \left (5-x+x^2\right )}{\log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {(-5+x) \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx\\ &=2 \int \frac {1}{\log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+2 \int \frac {-5+x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (1+i \sqrt {19}-2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {1}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {1}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \frac {\log \left (5-x+x^2\right )}{\log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \frac {(-5+x) \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=2 \int \frac {1}{\log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx+2 \int \left (-\frac {5}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx-2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (1+i \sqrt {19}-2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {1}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {1}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \left (-\frac {5 \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}+\frac {x \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )}\right ) \, dx+\int \frac {\log \left (5-x+x^2\right )}{\log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=2 \int \frac {1}{\log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-2 \int \frac {\log \left (5-x+x^2\right )}{\log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+2 \int \frac {x}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-5 \int \frac {\log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-10 \int \frac {1}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (1+i \sqrt {19}-2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}+\frac {(10 i) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx}{\sqrt {19}}-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {1}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19-i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1-i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {1}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3+x^2 (-1-5 \log (4))\right )} \, dx-\frac {1}{19} \left (19+i \sqrt {19}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-1+i \sqrt {19}+2 x\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (-x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\left (i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \int \frac {\log \left (5-x+x^2\right )}{\left (x+i \sqrt {\frac {3}{1+5 \log (4)}}\right ) \log ^2\left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \frac {\log \left (5-x+x^2\right )}{\log \left (-3-x^2 (1+5 \log (4))\right )} \, dx+\int \frac {x \log \left (5-x+x^2\right )}{\left (5-x+x^2\right ) \log \left (-3-x^2 (1+5 \log (4))\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 27, normalized size = 0.96 \begin {gather*} \frac {x \log \left (5-x+x^2\right )}{\log \left (-3-x^2 (1+5 \log (4))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 28, normalized size = 1.00 \begin {gather*} \frac {x \log \left (x^{2} - x + 5\right )}{\log \left (-10 \, x^{2} \log \relax (2) - x^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 29, normalized size = 1.04
method | result | size |
risch | \(\frac {x \ln \left (x^{2}-x +5\right )}{\ln \left (-10 x^{2} \ln \relax (2)-x^{2}-3\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 27, normalized size = 0.96 \begin {gather*} \frac {x \log \left (x^{2} - x + 5\right )}{\log \left (-x^{2} {\left (10 \, \log \relax (2) + 1\right )} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 199, normalized size = 7.11 \begin {gather*} x+\frac {x\,\ln \left (x^2-x+5\right )-\frac {\ln \left (-10\,x^2\,\ln \relax (2)-x^2-3\right )\,\left (10\,x^2\,\ln \relax (2)+x^2+3\right )\,\left (5\,\ln \left (x^2-x+5\right )-x-x\,\ln \left (x^2-x+5\right )+x^2\,\ln \left (x^2-x+5\right )+2\,x^2\right )}{2\,x\,\left (10\,\ln \relax (2)+1\right )\,\left (x^2-x+5\right )}}{\ln \left (-10\,x^2\,\ln \relax (2)-x^2-3\right )}-\frac {50\,\ln \relax (2)+x\,\left (90\,\ln \relax (2)+3\right )+8}{\left (20\,\ln \relax (2)+2\right )\,x^2+\left (-20\,\ln \relax (2)-2\right )\,x+100\,\ln \relax (2)+10}+\frac {\ln \left (x^2-x+5\right )\,\left (\frac {x^2}{2}+\frac {3}{2\,\left (10\,\ln \relax (2)+1\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 26, normalized size = 0.93 \begin {gather*} \frac {x \log {\left (x^{2} - x + 5 \right )}}{\log {\left (- 10 x^{2} \log {\relax (2 )} - x^{2} - 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________