Optimal. Leaf size=23 \[ -2+\frac {1+\frac {50}{17-4 e^5}}{1-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 1981, 27, 32} \begin {gather*} \frac {67-4 e^5}{\left (17-4 e^5\right ) (1-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 32
Rule 1981
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (-67+4 e^5\right ) \int \frac {1}{-17+34 x-17 x^2+e^5 \left (4-8 x+4 x^2\right )} \, dx\\ &=\left (-67+4 e^5\right ) \int \frac {1}{-17+4 e^5+2 \left (17-4 e^5\right ) x-\left (17-4 e^5\right ) x^2} \, dx\\ &=\left (-67+4 e^5\right ) \int \frac {1}{\left (-17+4 e^5\right ) (-1+x)^2} \, dx\\ &=\frac {\left (67-4 e^5\right ) \int \frac {1}{(-1+x)^2} \, dx}{17-4 e^5}\\ &=\frac {67-4 e^5}{\left (17-4 e^5\right ) (1-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 23, normalized size = 1.00 \begin {gather*} -\frac {-67+4 e^5}{\left (-17+4 e^5\right ) (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 22, normalized size = 0.96 \begin {gather*} -\frac {4 \, e^{5} - 67}{4 \, {\left (x - 1\right )} e^{5} - 17 \, x + 17} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 0.91 \begin {gather*} -\frac {4 \, e^{5} - 67}{{\left (x - 1\right )} {\left (4 \, e^{5} - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 22, normalized size = 0.96
method | result | size |
default | \(-\frac {4 \,{\mathrm e}^{5}-67}{\left (4 \,{\mathrm e}^{5}-17\right ) \left (x -1\right )}\) | \(22\) |
norman | \(-\frac {4 \,{\mathrm e}^{5}-67}{\left (4 \,{\mathrm e}^{5}-17\right ) \left (x -1\right )}\) | \(22\) |
gosper | \(-\frac {4 \,{\mathrm e}^{5}-67}{4 x \,{\mathrm e}^{5}-4 \,{\mathrm e}^{5}-17 x +17}\) | \(25\) |
risch | \(-\frac {{\mathrm e}^{5}}{x \,{\mathrm e}^{5}-{\mathrm e}^{5}-\frac {17 x}{4}+\frac {17}{4}}+\frac {67}{4 \left (x \,{\mathrm e}^{5}-{\mathrm e}^{5}-\frac {17 x}{4}+\frac {17}{4}\right )}\) | \(38\) |
meijerg | \(\frac {4 \,{\mathrm e}^{5} x}{\left (4 \,{\mathrm e}^{5}-17\right ) \left (1-x \right )}-\frac {67 x}{\left (4 \,{\mathrm e}^{5}-17\right ) \left (1-x \right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 1.04 \begin {gather*} -\frac {4 \, e^{5} - 67}{x {\left (4 \, e^{5} - 17\right )} - 4 \, e^{5} + 17} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 21, normalized size = 0.91 \begin {gather*} -\frac {4\,{\mathrm {e}}^5-67}{\left (4\,{\mathrm {e}}^5-17\right )\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.96 \begin {gather*} - \frac {-67 + 4 e^{5}}{x \left (-17 + 4 e^{5}\right ) - 4 e^{5} + 17} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________