Optimal. Leaf size=24 \[ 4+5 x-x^2-16 (-2+\log ((8-x) x))^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.38, antiderivative size = 83, normalized size of antiderivative = 3.46, number of steps used = 16, number of rules used = 10, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.244, Rules used = {1593, 6742, 1620, 2514, 2494, 2390, 2301, 2394, 2315, 2316} \begin {gather*} -x^2+5 x+16 \log ^2(x-8)+16 \log ^2(x)+32 \log (8) \log (8-x)+64 \log (8-x)+32 \log (x-8) \log \left (\frac {x}{8}\right )+64 \log (x)-32 \log (x-8) \log ((8-x) x)-32 \log (x) \log ((8-x) x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rule 2301
Rule 2315
Rule 2316
Rule 2390
Rule 2394
Rule 2494
Rule 2514
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-512+88 x+21 x^2-2 x^3+(256-64 x) \log \left (8 x-x^2\right )}{(-8+x) x} \, dx\\ &=\int \left (\frac {-512+88 x+21 x^2-2 x^3}{(-8+x) x}+\frac {64 (-4+x) \log ((8-x) x)}{(8-x) x}\right ) \, dx\\ &=64 \int \frac {(-4+x) \log ((8-x) x)}{(8-x) x} \, dx+\int \frac {-512+88 x+21 x^2-2 x^3}{(-8+x) x} \, dx\\ &=64 \int \left (-\frac {\log ((8-x) x)}{2 (-8+x)}-\frac {\log ((8-x) x)}{2 x}\right ) \, dx+\int \left (5+\frac {64}{-8+x}+\frac {64}{x}-2 x\right ) \, dx\\ &=5 x-x^2+64 \log (8-x)+64 \log (x)-32 \int \frac {\log ((8-x) x)}{-8+x} \, dx-32 \int \frac {\log ((8-x) x)}{x} \, dx\\ &=5 x-x^2+64 \log (8-x)+64 \log (x)-32 \log (-8+x) \log ((8-x) x)-32 \log (x) \log ((8-x) x)-32 \int \frac {\log (-8+x)}{8-x} \, dx+32 \int \frac {\log (-8+x)}{x} \, dx-32 \int \frac {\log (x)}{8-x} \, dx+32 \int \frac {\log (x)}{x} \, dx\\ &=5 x-x^2+64 \log (8-x)+32 \log (8) \log (8-x)+32 \log (-8+x) \log \left (\frac {x}{8}\right )+64 \log (x)+16 \log ^2(x)-32 \log (-8+x) \log ((8-x) x)-32 \log (x) \log ((8-x) x)-32 \int \frac {\log \left (\frac {x}{8}\right )}{8-x} \, dx-32 \int \frac {\log \left (\frac {x}{8}\right )}{-8+x} \, dx+32 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-8+x\right )\\ &=5 x-x^2+64 \log (8-x)+32 \log (8) \log (8-x)+16 \log ^2(-8+x)+32 \log (-8+x) \log \left (\frac {x}{8}\right )+64 \log (x)+16 \log ^2(x)-32 \log (-8+x) \log ((8-x) x)-32 \log (x) \log ((8-x) x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 71, normalized size = 2.96 \begin {gather*} 5 x-x^2+32 \log (8) \log (8-x)+16 \log ^2(-8+x)+64 \log (x)+16 \log ^2(x)+32 \log (-8+x) \left (2+\log \left (\frac {x}{8}\right )-\log (-((-8+x) x))\right )-32 \log (x) \log (-((-8+x) x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 35, normalized size = 1.46 \begin {gather*} -x^{2} - 16 \, \log \left (-x^{2} + 8 \, x\right )^{2} + 5 \, x + 64 \, \log \left (-x^{2} + 8 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, x^{3} - 21 \, x^{2} + 64 \, {\left (x - 4\right )} \log \left (-x^{2} + 8 \, x\right ) - 88 \, x + 512}{x^{2} - 8 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 34, normalized size = 1.42
method | result | size |
risch | \(-16 \ln \left (-x^{2}+8 x \right )^{2}-x^{2}+5 x +64 \ln \left (x^{2}-8 x \right )\) | \(34\) |
norman | \(64 \ln \left (-x^{2}+8 x \right )+5 x -x^{2}-16 \ln \left (-x^{2}+8 x \right )^{2}\) | \(36\) |
default | \(-x^{2}+5 x +64 \ln \left (-8+x \right )+64 \ln \relax (x )-32 \ln \left (-8+x \right ) \ln \left (-x^{2}+8 x \right )+32 \ln \left (-8+x \right ) \ln \left (\frac {x}{8}\right )+16 \ln \left (-8+x \right )^{2}-32 \ln \relax (x ) \ln \left (-x^{2}+8 x \right )+32 \left (\ln \relax (x )-\ln \left (\frac {x}{8}\right )\right ) \ln \left (-\frac {x}{8}+1\right )+16 \ln \relax (x )^{2}\) | \(91\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 45, normalized size = 1.88 \begin {gather*} -x^{2} - 16 \, \log \relax (x)^{2} - 32 \, \log \relax (x) \log \left (-x + 8\right ) - 16 \, \log \left (-x + 8\right )^{2} + 5 \, x + 64 \, \log \left (x - 8\right ) + 64 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 31, normalized size = 1.29 \begin {gather*} 5\,x+64\,\ln \left (x\,\left (x-8\right )\right )-16\,{\ln \left (8\,x-x^2\right )}^2-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 27, normalized size = 1.12 \begin {gather*} - x^{2} + 5 x - 16 \log {\left (- x^{2} + 8 x \right )}^{2} + 64 \log {\left (x^{2} - 8 x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________