Optimal. Leaf size=19 \[ \left (-5+x-\frac {1}{5} e^{-24-\frac {7 x}{4}} x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 57, normalized size of antiderivative = 3.00, number of steps used = 18, number of rules used = 5, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} -\frac {2}{5} e^{\frac {1}{4} (-7 x-96)} x^2+\frac {1}{25} e^{\frac {1}{2} (-7 x-96)} x^2+x^2+2 e^{\frac {1}{4} (-7 x-96)} x-10 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{50} \int \left (-500+100 x+e^{\frac {1}{2} (-96-7 x)} \left (4 x-7 x^2\right )+e^{\frac {1}{4} (-96-7 x)} \left (100-215 x+35 x^2\right )\right ) \, dx\\ &=-10 x+x^2+\frac {1}{50} \int e^{\frac {1}{2} (-96-7 x)} \left (4 x-7 x^2\right ) \, dx+\frac {1}{50} \int e^{\frac {1}{4} (-96-7 x)} \left (100-215 x+35 x^2\right ) \, dx\\ &=-10 x+x^2+\frac {1}{50} \int e^{\frac {1}{2} (-96-7 x)} (4-7 x) x \, dx+\frac {1}{50} \int \left (100 e^{\frac {1}{4} (-96-7 x)}-215 e^{\frac {1}{4} (-96-7 x)} x+35 e^{\frac {1}{4} (-96-7 x)} x^2\right ) \, dx\\ &=-10 x+x^2+\frac {1}{50} \int \left (4 e^{\frac {1}{2} (-96-7 x)} x-7 e^{\frac {1}{2} (-96-7 x)} x^2\right ) \, dx+\frac {7}{10} \int e^{\frac {1}{4} (-96-7 x)} x^2 \, dx+2 \int e^{\frac {1}{4} (-96-7 x)} \, dx-\frac {43}{10} \int e^{\frac {1}{4} (-96-7 x)} x \, dx\\ &=-\frac {8}{7} e^{\frac {1}{4} (-96-7 x)}-10 x+\frac {86}{35} e^{\frac {1}{4} (-96-7 x)} x+x^2-\frac {2}{5} e^{\frac {1}{4} (-96-7 x)} x^2+\frac {2}{25} \int e^{\frac {1}{2} (-96-7 x)} x \, dx-\frac {7}{50} \int e^{\frac {1}{2} (-96-7 x)} x^2 \, dx+\frac {4}{5} \int e^{\frac {1}{4} (-96-7 x)} x \, dx-\frac {86}{35} \int e^{\frac {1}{4} (-96-7 x)} \, dx\\ &=\frac {64}{245} e^{\frac {1}{4} (-96-7 x)}-10 x+2 e^{\frac {1}{4} (-96-7 x)} x-\frac {4}{175} e^{\frac {1}{2} (-96-7 x)} x+x^2-\frac {2}{5} e^{\frac {1}{4} (-96-7 x)} x^2+\frac {1}{25} e^{\frac {1}{2} (-96-7 x)} x^2+\frac {4}{175} \int e^{\frac {1}{2} (-96-7 x)} \, dx-\frac {2}{25} \int e^{\frac {1}{2} (-96-7 x)} x \, dx+\frac {16}{35} \int e^{\frac {1}{4} (-96-7 x)} \, dx\\ &=-\frac {8 e^{\frac {1}{2} (-96-7 x)}}{1225}-10 x+2 e^{\frac {1}{4} (-96-7 x)} x+x^2-\frac {2}{5} e^{\frac {1}{4} (-96-7 x)} x^2+\frac {1}{25} e^{\frac {1}{2} (-96-7 x)} x^2-\frac {4}{175} \int e^{\frac {1}{2} (-96-7 x)} \, dx\\ &=-10 x+2 e^{\frac {1}{4} (-96-7 x)} x+x^2-\frac {2}{5} e^{\frac {1}{4} (-96-7 x)} x^2+\frac {1}{25} e^{\frac {1}{2} (-96-7 x)} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 49, normalized size = 2.58 \begin {gather*} -10 x+x^2+\frac {1}{25} e^{-48-\frac {7 x}{2}} x^2+\frac {1}{10} e^{-7 x/4} \left (\frac {20 x}{e^{24}}-\frac {4 x^2}{e^{24}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 33, normalized size = 1.74 \begin {gather*} \frac {1}{25} \, x^{2} e^{\left (-\frac {7}{2} \, x - 48\right )} + x^{2} - \frac {2}{5} \, {\left (x^{2} - 5 \, x\right )} e^{\left (-\frac {7}{4} \, x - 24\right )} - 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 33, normalized size = 1.74 \begin {gather*} \frac {1}{25} \, x^{2} e^{\left (-\frac {7}{2} \, x - 48\right )} + x^{2} - \frac {2}{5} \, {\left (x^{2} - 5 \, x\right )} e^{\left (-\frac {7}{4} \, x - 24\right )} - 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 36, normalized size = 1.89
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {7 x}{2}-48} x^{2}}{25}+\frac {\left (-20 x^{2}+100 x \right ) {\mathrm e}^{-\frac {7 x}{4}-24}}{50}+x^{2}-10 x\) | \(36\) |
norman | \(x^{2}-10 x +2 \,{\mathrm e}^{-\frac {7 x}{4}-24} x -\frac {2 \,{\mathrm e}^{-\frac {7 x}{4}-24} x^{2}}{5}+\frac {{\mathrm e}^{-\frac {7 x}{2}-48} x^{2}}{25}\) | \(41\) |
default | \(x^{2}-10 x +\frac {9216 \,{\mathrm e}^{-\frac {7 x}{2}-48}}{1225}+\frac {768 \,{\mathrm e}^{-\frac {7 x}{2}-48} \left (-\frac {7 x}{4}-24\right )}{1225}+\frac {16 \,{\mathrm e}^{-\frac {7 x}{2}-48} \left (-\frac {7 x}{4}-24\right )^{2}}{1225}-\frac {1816 \,{\mathrm e}^{-\frac {7 x}{4}-24} \left (-\frac {7 x}{4}-24\right )}{245}-\frac {25152 \,{\mathrm e}^{-\frac {7 x}{4}-24}}{245}-\frac {32 \,{\mathrm e}^{-\frac {7 x}{4}-24} \left (-\frac {7 x}{4}-24\right )^{2}}{245}\) | \(86\) |
derivativedivides | \(-\frac {262 x}{7}-\frac {25152}{49}+\frac {16 \left (-\frac {7 x}{4}-24\right )^{2}}{49}+\frac {9216 \,{\mathrm e}^{-\frac {7 x}{2}-48}}{1225}+\frac {768 \,{\mathrm e}^{-\frac {7 x}{2}-48} \left (-\frac {7 x}{4}-24\right )}{1225}+\frac {16 \,{\mathrm e}^{-\frac {7 x}{2}-48} \left (-\frac {7 x}{4}-24\right )^{2}}{1225}-\frac {1816 \,{\mathrm e}^{-\frac {7 x}{4}-24} \left (-\frac {7 x}{4}-24\right )}{245}-\frac {25152 \,{\mathrm e}^{-\frac {7 x}{4}-24}}{245}-\frac {32 \,{\mathrm e}^{-\frac {7 x}{4}-24} \left (-\frac {7 x}{4}-24\right )^{2}}{245}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 33, normalized size = 1.74 \begin {gather*} \frac {1}{25} \, x^{2} e^{\left (-\frac {7}{2} \, x - 48\right )} + x^{2} - \frac {2}{5} \, {\left (x^{2} - 5 \, x\right )} e^{\left (-\frac {7}{4} \, x - 24\right )} - 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 38, normalized size = 2.00 \begin {gather*} -\frac {x\,{\mathrm {e}}^{-\frac {7\,x}{2}-48}\,\left (5\,{\mathrm {e}}^{\frac {7\,x}{4}+24}-1\right )\,\left (x+50\,{\mathrm {e}}^{\frac {7\,x}{4}+24}-5\,x\,{\mathrm {e}}^{\frac {7\,x}{4}+24}\right )}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 41, normalized size = 2.16 \begin {gather*} \frac {x^{2} e^{- \frac {7 x}{2} - 48}}{25} + x^{2} - 10 x + \frac {\left (- 50 x^{2} + 250 x\right ) e^{- \frac {7 x}{4} - 24}}{125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________