Optimal. Leaf size=22 \[ \log (\log (3)) \left (16+\frac {x}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1-9 \log \left (\frac {3}{x}\right )\right ) \log (\log (3))+\log \left (\frac {3}{x}\right ) \log (\log (3)) \log \left (\log \left (\frac {3}{x}\right )\right )}{\left (81-72 x+16 x^2\right ) \log \left (\frac {3}{x}\right )+(-18+8 x) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right )+\log \left (\frac {3}{x}\right ) \log ^2\left (\log \left (\frac {3}{x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (\log (3)) \left (1+\log \left (\frac {3}{x}\right ) \left (-9+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )}{\log \left (\frac {3}{x}\right ) \left (9-4 x-\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx\\ &=\log (\log (3)) \int \frac {1+\log \left (\frac {3}{x}\right ) \left (-9+\log \left (\log \left (\frac {3}{x}\right )\right )\right )}{\log \left (\frac {3}{x}\right ) \left (9-4 x-\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx\\ &=\log (\log (3)) \int \left (\frac {1-4 x \log \left (\frac {3}{x}\right )}{\log \left (\frac {3}{x}\right ) \left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}+\frac {1}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )}\right ) \, dx\\ &=\log (\log (3)) \int \frac {1-4 x \log \left (\frac {3}{x}\right )}{\log \left (\frac {3}{x}\right ) \left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx+\log (\log (3)) \int \frac {1}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )} \, dx\\ &=\log (\log (3)) \int \frac {1}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )} \, dx+\log (\log (3)) \int \left (-\frac {4 x}{\left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}+\frac {1}{\log \left (\frac {3}{x}\right ) \left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}\right ) \, dx\\ &=\log (\log (3)) \int \frac {1}{\log \left (\frac {3}{x}\right ) \left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx+\log (\log (3)) \int \frac {1}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )} \, dx-(4 \log (\log (3))) \int \frac {x}{\left (-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 0.86 \begin {gather*} \frac {x \log (\log (3))}{-9+4 x+\log \left (\log \left (\frac {3}{x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 19, normalized size = 0.86 \begin {gather*} \frac {x \log \left (\log \relax (3)\right )}{4 \, x + \log \left (\log \left (\frac {3}{x}\right )\right ) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.63, size = 172, normalized size = 7.82 \begin {gather*} \frac {4 \, x^{2} \log \relax (3) \log \left (\frac {3}{x}\right ) \log \left (\log \relax (3)\right ) - 4 \, x^{2} \log \relax (x) \log \left (\frac {3}{x}\right ) \log \left (\log \relax (3)\right ) - x \log \left (\frac {3}{x}\right ) \log \left (\log \relax (3)\right )}{16 \, x^{2} \log \relax (3) \log \left (\frac {3}{x}\right ) - 16 \, x^{2} \log \relax (x) \log \left (\frac {3}{x}\right ) + 4 \, x \log \relax (3) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right ) - 4 \, x \log \relax (x) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right ) - 36 \, x \log \relax (3) \log \left (\frac {3}{x}\right ) + 36 \, x \log \relax (x) \log \left (\frac {3}{x}\right ) - 4 \, x \log \relax (3) + 4 \, x \log \relax (x) - \log \relax (3) \log \left (\log \left (\frac {3}{x}\right )\right ) + \log \relax (x) \log \left (\log \left (\frac {3}{x}\right )\right ) + 9 \, \log \relax (3) - 9 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\ln \left (\frac {3}{x}\right ) \ln \left (\ln \relax (3)\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )+\left (-9 \ln \left (\frac {3}{x}\right )+1\right ) \ln \left (\ln \relax (3)\right )}{\ln \left (\frac {3}{x}\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )^{2}+\left (8 x -18\right ) \ln \left (\frac {3}{x}\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )+\left (16 x^{2}-72 x +81\right ) \ln \left (\frac {3}{x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 20, normalized size = 0.91 \begin {gather*} \frac {x \log \left (\log \relax (3)\right )}{4 \, x + \log \left (\log \relax (3) - \log \relax (x)\right ) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 31, normalized size = 1.41 \begin {gather*} \frac {\frac {9\,\ln \left (\ln \relax (3)\right )}{4}+\frac {\ln \left (\ln \relax (3)\right )\,\left (4\,x-9\right )}{4}}{4\,x+\ln \left (\ln \left (\frac {3}{x}\right )\right )-9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.77 \begin {gather*} \frac {x \log {\left (\log {\relax (3 )} \right )}}{4 x + \log {\left (\log {\left (\frac {3}{x} \right )} \right )} - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________