Optimal. Leaf size=30 \[ -\frac {3 x}{\left (-x+\frac {x^2}{e^{10}}\right ) \log \left (\frac {5}{2}\right ) \left (3+\log ^2(x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9 e^{10} x+\left (6 e^{20}-6 e^{10} x\right ) \log (x)-3 e^{10} x \log ^2(x)}{-\left (\left (9 e^{20} x-18 e^{10} x^2+9 x^3\right ) \log \left (\frac {5}{2}\right )\right )-\left (6 e^{20} x-12 e^{10} x^2+6 x^3\right ) \log \left (\frac {5}{2}\right ) \log ^2(x)-\left (e^{20} x-2 e^{10} x^2+x^3\right ) \log \left (\frac {5}{2}\right ) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^{10} \left (3 x-2 \left (e^{10}-x\right ) \log (x)+x \log ^2(x)\right )}{\left (e^{10}-x\right )^2 x \log \left (\frac {5}{2}\right ) \left (3+\log ^2(x)\right )^2} \, dx\\ &=\frac {\left (3 e^{10}\right ) \int \frac {3 x-2 \left (e^{10}-x\right ) \log (x)+x \log ^2(x)}{\left (e^{10}-x\right )^2 x \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}\\ &=\frac {\left (3 e^{10}\right ) \int \left (-\frac {2 \log (x)}{\left (e^{10}-x\right ) x \left (3+\log ^2(x)\right )^2}+\frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )}\right ) \, dx}{\log \left (\frac {5}{2}\right )}\\ &=\frac {\left (3 e^{10}\right ) \int \frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )} \, dx}{\log \left (\frac {5}{2}\right )}-\frac {\left (6 e^{10}\right ) \int \frac {\log (x)}{\left (e^{10}-x\right ) x \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}\\ &=\frac {\left (3 e^{10}\right ) \int \frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )} \, dx}{\log \left (\frac {5}{2}\right )}-\frac {\left (6 e^{10}\right ) \int \left (\frac {\log (x)}{e^{10} \left (e^{10}-x\right ) \left (3+\log ^2(x)\right )^2}+\frac {\log (x)}{e^{10} x \left (3+\log ^2(x)\right )^2}\right ) \, dx}{\log \left (\frac {5}{2}\right )}\\ &=-\frac {6 \int \frac {\log (x)}{\left (e^{10}-x\right ) \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}-\frac {6 \int \frac {\log (x)}{x \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}+\frac {\left (3 e^{10}\right ) \int \frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )} \, dx}{\log \left (\frac {5}{2}\right )}\\ &=-\frac {6 \int \frac {\log (x)}{\left (e^{10}-x\right ) \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}-\frac {6 \operatorname {Subst}\left (\int \frac {x}{\left (3+x^2\right )^2} \, dx,x,\log (x)\right )}{\log \left (\frac {5}{2}\right )}+\frac {\left (3 e^{10}\right ) \int \frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )} \, dx}{\log \left (\frac {5}{2}\right )}\\ &=\frac {3}{\log \left (\frac {5}{2}\right ) \left (3+\log ^2(x)\right )}-\frac {6 \int \frac {\log (x)}{\left (e^{10}-x\right ) \left (3+\log ^2(x)\right )^2} \, dx}{\log \left (\frac {5}{2}\right )}+\frac {\left (3 e^{10}\right ) \int \frac {1}{\left (e^{10}-x\right )^2 \left (3+\log ^2(x)\right )} \, dx}{\log \left (\frac {5}{2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 0.93 \begin {gather*} \frac {3 e^{10}}{\left (e^{10}-x\right ) \log \left (\frac {5}{2}\right ) \left (3+\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 30, normalized size = 1.00 \begin {gather*} \frac {3 \, e^{10}}{{\left (x - e^{10}\right )} \log \left (\frac {2}{5}\right ) \log \relax (x)^{2} + 3 \, {\left (x - e^{10}\right )} \log \left (\frac {2}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.70, size = 65, normalized size = 2.17 \begin {gather*} -\frac {6 \, e^{10}}{x \log \relax (5) \log \relax (x)^{2} - e^{10} \log \relax (5) \log \relax (x)^{2} - x \log \relax (2) \log \relax (x)^{2} + e^{10} \log \relax (2) \log \relax (x)^{2} + 3 \, x \log \relax (5) - 3 \, e^{10} \log \relax (5) - 3 \, x \log \relax (2) + 3 \, e^{10} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 30, normalized size = 1.00
method | result | size |
risch | \(-\frac {3 \,{\mathrm e}^{10}}{\left (\ln \relax (2)-\ln \relax (5)\right ) \left (\ln \relax (x )^{2}+3\right ) \left ({\mathrm e}^{10}-x \right )}\) | \(30\) |
norman | \(-\frac {3 \,{\mathrm e}^{10}}{\left (\ln \relax (2)-\ln \relax (5)\right ) \left (\ln \relax (x )^{2}+3\right ) \left ({\mathrm e}^{10}-x \right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 54, normalized size = 1.80 \begin {gather*} -\frac {3 \, e^{10}}{{\left (x {\left (\log \relax (5) - \log \relax (2)\right )} - {\left (\log \relax (5) - \log \relax (2)\right )} e^{10}\right )} \log \relax (x)^{2} + 3 \, x {\left (\log \relax (5) - \log \relax (2)\right )} - 3 \, {\left (\log \relax (5) - \log \relax (2)\right )} e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.75, size = 24, normalized size = 0.80 \begin {gather*} \frac {3\,{\mathrm {e}}^{10}}{\ln \left (\frac {2}{5}\right )\,\left (x-{\mathrm {e}}^{10}\right )\,\left ({\ln \relax (x)}^2+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 63, normalized size = 2.10 \begin {gather*} \frac {3 e^{10}}{- 3 x \log {\relax (5 )} + 3 x \log {\relax (2 )} + \left (- x \log {\relax (5 )} + x \log {\relax (2 )} - e^{10} \log {\relax (2 )} + e^{10} \log {\relax (5 )}\right ) \log {\relax (x )}^{2} - 3 e^{10} \log {\relax (2 )} + 3 e^{10} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________