Optimal. Leaf size=18 \[ 1+\frac {8 \log (\log (x))}{\log (2-\log (2 x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 \log (x) \log (\log (x))+(-16+8 \log (2 x)) \log (2-\log (2 x))}{(-2 x \log (x)+x \log (x) \log (2 x)) \log ^2(2-\log (2 x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \log (x) \log (\log (x))-(-16+8 \log (2 x)) \log (2-\log (2 x))}{x \log (x) (2-\log (2 x)) \log ^2(2-\log (2 x))} \, dx\\ &=\int \frac {8 \left (-\frac {\log (\log (x))}{-2+\log (2 x)}+\frac {\log (2-\log (2 x))}{\log (x)}\right )}{x \log ^2(2-\log (2 x))} \, dx\\ &=8 \int \frac {-\frac {\log (\log (x))}{-2+\log (2 x)}+\frac {\log (2-\log (2 x))}{\log (x)}}{x \log ^2(2-\log (2 x))} \, dx\\ &=8 \int \left (-\frac {\log (\log (x))}{x (-2+\log (2 x)) \log ^2(2-\log (2 x))}+\frac {1}{x \log (x) \log (2-\log (2 x))}\right ) \, dx\\ &=-\left (8 \int \frac {\log (\log (x))}{x (-2+\log (2 x)) \log ^2(2-\log (2 x))} \, dx\right )+8 \int \frac {1}{x \log (x) \log (2-\log (2 x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 16, normalized size = 0.89 \begin {gather*} \frac {8 \log (\log (x))}{\log (2-\log (2 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 18, normalized size = 1.00 \begin {gather*} \frac {8 \, \log \left (\log \relax (x)\right )}{\log \left (-\log \relax (2) - \log \relax (x) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 18, normalized size = 1.00 \begin {gather*} \frac {8 \, \log \left (\log \relax (x)\right )}{\log \left (-\log \relax (2) - \log \relax (x) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 1.06
method | result | size |
risch | \(\frac {8 \ln \left (\ln \relax (x )\right )}{\ln \left (-\ln \relax (2)-\ln \relax (x )+2\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 18, normalized size = 1.00 \begin {gather*} \frac {8 \, \log \left (\log \relax (x)\right )}{\log \left (-\log \relax (2) - \log \relax (x) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.64, size = 16, normalized size = 0.89 \begin {gather*} \frac {8\,\ln \left (\ln \relax (x)\right )}{\ln \left (2-\ln \left (2\,x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 15, normalized size = 0.83 \begin {gather*} \frac {8 \log {\left (\log {\relax (x )} \right )}}{\log {\left (- \log {\relax (x )} - \log {\relax (2 )} + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________