Optimal. Leaf size=27 \[ \log \left (e^{-e^{\frac {x}{\log \left (1+e^5-2 x\right )}}} \log \left (\frac {3 x}{2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.71, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 6, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6, 1593, 6688, 6706, 2302, 29} \begin {gather*} \log \left (\log \left (\frac {3 x}{2}\right )\right )-e^{\frac {x}{\log \left (-2 x+e^5+1\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 29
Rule 1593
Rule 2302
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (1+e^5-2 x\right ) \log ^2\left (1+e^5-2 x\right )+e^{\frac {x}{\log \left (1+e^5-2 x\right )}} \left (-2 x^2 \log \left (\frac {3 x}{2}\right )+\left (-x-e^5 x+2 x^2\right ) \log \left (1+e^5-2 x\right ) \log \left (\frac {3 x}{2}\right )\right )}{\left (\left (1+e^5\right ) x-2 x^2\right ) \log ^2\left (1+e^5-2 x\right ) \log \left (\frac {3 x}{2}\right )} \, dx\\ &=\int \frac {\left (1+e^5-2 x\right ) \log ^2\left (1+e^5-2 x\right )+e^{\frac {x}{\log \left (1+e^5-2 x\right )}} \left (-2 x^2 \log \left (\frac {3 x}{2}\right )+\left (-x-e^5 x+2 x^2\right ) \log \left (1+e^5-2 x\right ) \log \left (\frac {3 x}{2}\right )\right )}{\left (1+e^5-2 x\right ) x \log ^2\left (1+e^5-2 x\right ) \log \left (\frac {3 x}{2}\right )} \, dx\\ &=\int \left (-\frac {e^{\frac {x}{\log \left (1+e^5-2 x\right )}} \left (2 x+\left (1+e^5-2 x\right ) \log \left (1+e^5-2 x\right )\right )}{\left (1+e^5-2 x\right ) \log ^2\left (1+e^5-2 x\right )}+\frac {1}{x \log \left (\frac {3 x}{2}\right )}\right ) \, dx\\ &=-\int \frac {e^{\frac {x}{\log \left (1+e^5-2 x\right )}} \left (2 x+\left (1+e^5-2 x\right ) \log \left (1+e^5-2 x\right )\right )}{\left (1+e^5-2 x\right ) \log ^2\left (1+e^5-2 x\right )} \, dx+\int \frac {1}{x \log \left (\frac {3 x}{2}\right )} \, dx\\ &=-e^{\frac {x}{\log \left (1+e^5-2 x\right )}}+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {3 x}{2}\right )\right )\\ &=-e^{\frac {x}{\log \left (1+e^5-2 x\right )}}+\log \left (\log \left (\frac {3 x}{2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 25, normalized size = 0.93 \begin {gather*} -e^{\frac {x}{\log \left (1+e^5-2 x\right )}}+\log \left (\log \left (\frac {3 x}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 21, normalized size = 0.78 \begin {gather*} -e^{\left (\frac {x}{\log \left (-2 \, x + e^{5} + 1\right )}\right )} + \log \left (\log \left (\frac {3}{2} \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 26, normalized size = 0.96 \begin {gather*} -e^{\left (\frac {x}{\log \left (-2 \, x + e^{5} + 1\right )}\right )} + \log \left (-\log \relax (2) + \log \left (3 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 22, normalized size = 0.81
method | result | size |
default | \(\ln \left (\ln \left (\frac {3 x}{2}\right )\right )-{\mathrm e}^{\frac {x}{\ln \left ({\mathrm e}^{5}+1-2 x \right )}}\) | \(22\) |
risch | \(\ln \left (\ln \left (\frac {3 x}{2}\right )\right )-{\mathrm e}^{\frac {x}{\ln \left ({\mathrm e}^{5}+1-2 x \right )}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 0.96 \begin {gather*} -e^{\left (\frac {x}{\log \left (-2 \, x + e^{5} + 1\right )}\right )} + \log \left (\log \relax (3) - \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.62, size = 21, normalized size = 0.78 \begin {gather*} \ln \left (\ln \left (\frac {3\,x}{2}\right )\right )-{\mathrm {e}}^{\frac {x}{\ln \left ({\mathrm {e}}^5-2\,x+1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________