Optimal. Leaf size=22 \[ 25+e^{-5+x+\log ^2(2)}-x \log \left (\frac {e^{32}}{5}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 0.86, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2194} \begin {gather*} e^{x-5+\log ^2(2)}-x (32-\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x (32-\log (5))+\int e^{-5+x+\log ^2(2)} \, dx\\ &=e^{-5+x+\log ^2(2)}-x (32-\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 0.77 \begin {gather*} e^{-5+x+\log ^2(2)}-32 x+x \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 16, normalized size = 0.73 \begin {gather*} x \log \relax (5) - 32 \, x + e^{\left (\log \relax (2)^{2} + x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.77 \begin {gather*} -x \log \left (\frac {1}{5} \, e^{32}\right ) + e^{\left (\log \relax (2)^{2} + x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.73
method | result | size |
norman | \(\left (-32+\ln \relax (5)\right ) x +{\mathrm e}^{\ln \relax (2)^{2}+x -5}\) | \(16\) |
risch | \(x \ln \relax (5)+{\mathrm e}^{\ln \relax (2)^{2}+x -5}-32 x\) | \(17\) |
default | \(-\ln \left (\frac {{\mathrm e}^{32}}{5}\right ) x +{\mathrm e}^{\ln \relax (2)^{2}+x -5}\) | \(20\) |
derivativedivides | \({\mathrm e}^{\ln \relax (2)^{2}+x -5}-\ln \left (\frac {{\mathrm e}^{32}}{5}\right ) \ln \left ({\mathrm e}^{\ln \relax (2)^{2}+x -5}\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 17, normalized size = 0.77 \begin {gather*} -x \log \left (\frac {1}{5} \, e^{32}\right ) + e^{\left (\log \relax (2)^{2} + x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 18, normalized size = 0.82 \begin {gather*} x\,\ln \relax (5)-32\,x+{\mathrm {e}}^{{\ln \relax (2)}^2}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 15, normalized size = 0.68 \begin {gather*} x \left (-32 + \log {\relax (5 )}\right ) + e^{x - 5 + \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________