Optimal. Leaf size=28 \[ \frac {20 e^{5-x} \left (-1+8 e^{\frac {4}{-3+x}}+2 x\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^{5+\frac {4}{-3+x}} \left (-1440-1120 x+800 x^2-160 x^3\right )+e^5 \left (180+60 x-460 x^2+260 x^3-40 x^4\right )\right )}{9 x^2-6 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^{5+\frac {4}{-3+x}} \left (-1440-1120 x+800 x^2-160 x^3\right )+e^5 \left (180+60 x-460 x^2+260 x^3-40 x^4\right )\right )}{x^2 \left (9-6 x+x^2\right )} \, dx\\ &=\int \frac {e^{-x} \left (e^{5+\frac {4}{-3+x}} \left (-1440-1120 x+800 x^2-160 x^3\right )+e^5 \left (180+60 x-460 x^2+260 x^3-40 x^4\right )\right )}{(-3+x)^2 x^2} \, dx\\ &=\int \left (-\frac {20 e^{5-x} (-1+x) (1+2 x)}{x^2}+\frac {160 e^{-x+\frac {-11+5 x}{-3+x}} \left (-9-7 x+5 x^2-x^3\right )}{(3-x)^2 x^2}\right ) \, dx\\ &=-\left (20 \int \frac {e^{5-x} (-1+x) (1+2 x)}{x^2} \, dx\right )+160 \int \frac {e^{-x+\frac {-11+5 x}{-3+x}} \left (-9-7 x+5 x^2-x^3\right )}{(3-x)^2 x^2} \, dx\\ &=-\left (20 \int \left (2 e^{5-x}-\frac {e^{5-x}}{x^2}-\frac {e^{5-x}}{x}\right ) \, dx\right )+160 \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}} \left (-9-7 x+5 x^2-x^3\right )}{(3-x)^2 x^2} \, dx\\ &=20 \int \frac {e^{5-x}}{x^2} \, dx+20 \int \frac {e^{5-x}}{x} \, dx-40 \int e^{5-x} \, dx+160 \int \left (-\frac {4 e^{\frac {-11+8 x-x^2}{-3+x}}}{3 (-3+x)^2}+\frac {4 e^{\frac {-11+8 x-x^2}{-3+x}}}{9 (-3+x)}-\frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{x^2}-\frac {13 e^{\frac {-11+8 x-x^2}{-3+x}}}{9 x}\right ) \, dx\\ &=40 e^{5-x}-\frac {20 e^{5-x}}{x}+20 e^5 \text {Ei}(-x)-20 \int \frac {e^{5-x}}{x} \, dx+\frac {640}{9} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{-3+x} \, dx-160 \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{x^2} \, dx-\frac {640}{3} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{(-3+x)^2} \, dx-\frac {2080}{9} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{x} \, dx\\ &=40 e^{5-x}-\frac {20 e^{5-x}}{x}+\frac {640}{9} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{-3+x} \, dx-160 \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{x^2} \, dx-\frac {640}{3} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{(-3+x)^2} \, dx-\frac {2080}{9} \int \frac {e^{\frac {-11+8 x-x^2}{-3+x}}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 28, normalized size = 1.00 \begin {gather*} -\frac {20 e^{5-x} \left (1-8 e^{\frac {4}{-3+x}}-2 x\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 36, normalized size = 1.29 \begin {gather*} \frac {20 \, {\left ({\left (2 \, x - 1\right )} e^{\left (-x + 5\right )} + 8 \, e^{\left (-x + \frac {5 \, x - 11}{x - 3}\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 44, normalized size = 1.57 \begin {gather*} \frac {20 \, {\left (2 \, x e^{\left (-x + 5\right )} - e^{\left (-x + 5\right )} + 8 \, e^{\left (-\frac {3 \, x^{2} - 13 \, x}{3 \, {\left (x - 3\right )}} + \frac {11}{3}\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 39, normalized size = 1.39
method | result | size |
risch | \(\frac {20 \left (2 x -1\right ) {\mathrm e}^{5-x}}{x}+\frac {160 \,{\mathrm e}^{-\frac {x^{2}-8 x +11}{x -3}}}{x}\) | \(39\) |
norman | \(\frac {\left (-140 x \,{\mathrm e}^{5}+40 x^{2} {\mathrm e}^{5}-480 \,{\mathrm e}^{5} {\mathrm e}^{\frac {4}{x -3}}+160 x \,{\mathrm e}^{5} {\mathrm e}^{\frac {4}{x -3}}+60 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-x}}{x \left (x -3\right )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 31, normalized size = 1.11 \begin {gather*} \frac {20 \, {\left (2 \, x e^{5} - e^{5} + 8 \, e^{\left (\frac {4}{x - 3} + 5\right )}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 39, normalized size = 1.39 \begin {gather*} 40\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^5-\frac {20\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^5}{x}+\frac {160\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{\frac {4}{x-3}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 32, normalized size = 1.14 \begin {gather*} \frac {\left (40 x e^{5} - 20 e^{5}\right ) e^{- x}}{x} + \frac {160 e^{5} e^{- x} e^{\frac {4}{x - 3}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________