Optimal. Leaf size=34 \[ e^{4+e^{\frac {-\frac {x}{4}+\left (-2+e^x-x\right ) \left (3+\frac {1+x}{x^2}\right )}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 25.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right ) \left (e^4 \left (6+6 x+7 x^2\right )+e^{4+x} \left (-3-x-2 x^2+3 x^3\right )\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right ) \left (6+6 x+7 x^2\right )}{x^4}+\frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right ) \left (-3-x-2 x^2+3 x^3\right )}{x^4}\right ) \, dx\\ &=\int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right ) \left (6+6 x+7 x^2\right )}{x^4} \, dx+\int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right ) \left (-3-x-2 x^2+3 x^3\right )}{x^4} \, dx\\ &=\int \left (\frac {6 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^4}+\frac {6 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^3}+\frac {7 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^2}\right ) \, dx+\int \left (-\frac {3 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^4}-\frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^3}-\frac {2 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^2}+\frac {3 \exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^2} \, dx\right )-3 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^4} \, dx+3 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x} \, dx+6 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^4} \, dx+6 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^3} \, dx+7 \int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^2} \, dx-\int \frac {\exp \left (4+\exp \left (\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )+x+\frac {-8-12 x-28 x^2-13 x^3+e^x \left (4+4 x+12 x^2\right )}{4 x^3}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 40, normalized size = 1.18 \begin {gather*} e^{4+e^{-\frac {13}{4}-\frac {2}{x^3}-\frac {3}{x^2}-\frac {7}{x}+\frac {e^x \left (1+x+3 x^2\right )}{x^3}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 132, normalized size = 3.88 \begin {gather*} e^{\left (\frac {{\left (4 \, x^{3} e^{\left (-\frac {{\left ({\left (13 \, x^{3} + 28 \, x^{2} + 12 \, x + 8\right )} e^{4} - 4 \, {\left (3 \, x^{2} + x + 1\right )} e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{4 \, x^{3}} + 4\right )} - {\left (13 \, x^{3} + 28 \, x^{2} + 12 \, x + 8\right )} e^{4} + 4 \, {\left (3 \, x^{2} + x + 1\right )} e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{4 \, x^{3}} + \frac {{\left ({\left (13 \, x^{3} + 28 \, x^{2} + 12 \, x + 8\right )} e^{4} - 4 \, {\left (3 \, x^{2} + x + 1\right )} e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{4 \, x^{3}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (7 \, x^{2} + 6 \, x + 6\right )} e^{4} + {\left (3 \, x^{3} - 2 \, x^{2} - x - 3\right )} e^{\left (x + 4\right )}\right )} e^{\left (-\frac {13 \, x^{3} + 28 \, x^{2} - 4 \, {\left (3 \, x^{2} + x + 1\right )} e^{x} + 12 \, x + 8}{4 \, x^{3}} + e^{\left (-\frac {13 \, x^{3} + 28 \, x^{2} - 4 \, {\left (3 \, x^{2} + x + 1\right )} e^{x} + 12 \, x + 8}{4 \, x^{3}}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 41, normalized size = 1.21
method | result | size |
risch | \({\mathrm e}^{4+{\mathrm e}^{\frac {12 \,{\mathrm e}^{x} x^{2}-13 x^{3}+4 \,{\mathrm e}^{x} x -28 x^{2}+4 \,{\mathrm e}^{x}-12 x -8}{4 x^{3}}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.02, size = 40, normalized size = 1.18 \begin {gather*} e^{\left (e^{\left (\frac {3 \, e^{x}}{x} - \frac {7}{x} + \frac {e^{x}}{x^{2}} - \frac {3}{x^{2}} + \frac {e^{x}}{x^{3}} - \frac {2}{x^{3}} - \frac {13}{4}\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.72, size = 47, normalized size = 1.38 \begin {gather*} {\mathrm {e}}^4\,{\mathrm {e}}^{{\mathrm {e}}^{-\frac {13}{4}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x^3}}\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^x}{x}}\,{\mathrm {e}}^{-\frac {3}{x^2}}\,{\mathrm {e}}^{-\frac {2}{x^3}}\,{\mathrm {e}}^{-\frac {7}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.95, size = 41, normalized size = 1.21 \begin {gather*} e^{4} e^{e^{\frac {- \frac {13 x^{3}}{4} - 7 x^{2} - 3 x + \frac {\left (12 x^{2} + 4 x + 4\right ) e^{x}}{4} - 2}{x^{3}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________