Optimal. Leaf size=26 \[ 5-3 \log (1+x)+x \left (-1+x-\log \left (-x+\frac {400}{\log ^2(x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-800-800 x+\left (1600-400 x-800 x^2\right ) \log (x)+\left (-5 x+2 x^3\right ) \log ^3(x)+\left ((400+400 x) \log (x)+\left (-x-x^2\right ) \log ^3(x)\right ) \log \left (\frac {400-x \log ^2(x)}{\log ^2(x)}\right )}{(-400-400 x) \log (x)+\left (x+x^2\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {800+800 x-\left (1600-400 x-800 x^2\right ) \log (x)-\left (-5 x+2 x^3\right ) \log ^3(x)-\left ((400+400 x) \log (x)+\left (-x-x^2\right ) \log ^3(x)\right ) \log \left (\frac {400-x \log ^2(x)}{\log ^2(x)}\right )}{(1+x) \log (x) \left (400-x \log ^2(x)\right )} \, dx\\ &=\int \left (-\frac {400 \left (-4+x+2 x^2\right )}{(1+x) \left (-400+x \log ^2(x)\right )}-\frac {800}{(1+x) \log (x) \left (-400+x \log ^2(x)\right )}-\frac {800 x}{(1+x) \log (x) \left (-400+x \log ^2(x)\right )}+\frac {x \left (-5+2 x^2\right ) \log ^2(x)}{(1+x) \left (-400+x \log ^2(x)\right )}-\log \left (-x+\frac {400}{\log ^2(x)}\right )\right ) \, dx\\ &=-\left (400 \int \frac {-4+x+2 x^2}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx\right )-800 \int \frac {1}{(1+x) \log (x) \left (-400+x \log ^2(x)\right )} \, dx-800 \int \frac {x}{(1+x) \log (x) \left (-400+x \log ^2(x)\right )} \, dx+\int \frac {x \left (-5+2 x^2\right ) \log ^2(x)}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx-\int \log \left (-x+\frac {400}{\log ^2(x)}\right ) \, dx\\ &=-\left (400 \int \left (\frac {1}{400-x \log ^2(x)}+\frac {2 x}{-400+x \log ^2(x)}-\frac {3}{(1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx\right )-800 \int \left (-\frac {1}{400 (1+x) \log (x)}+\frac {x \log (x)}{400 (1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx-800 \int \left (-\frac {x}{400 (1+x) \log (x)}+\frac {x^2 \log (x)}{400 (1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx+\int \left (\frac {-5+2 x^2}{1+x}+\frac {400 \left (-5+2 x^2\right )}{(1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx-\int \log \left (-x+\frac {400}{\log ^2(x)}\right ) \, dx\\ &=2 \int \frac {1}{(1+x) \log (x)} \, dx+2 \int \frac {x}{(1+x) \log (x)} \, dx-2 \int \frac {x \log (x)}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx-2 \int \frac {x^2 \log (x)}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx-400 \int \frac {1}{400-x \log ^2(x)} \, dx+400 \int \frac {-5+2 x^2}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx-800 \int \frac {x}{-400+x \log ^2(x)} \, dx+1200 \int \frac {1}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx+\int \frac {-5+2 x^2}{1+x} \, dx-\int \log \left (-x+\frac {400}{\log ^2(x)}\right ) \, dx\\ &=2 \int \frac {1}{(1+x) \log (x)} \, dx+2 \int \frac {x}{(1+x) \log (x)} \, dx-2 \int \left (\frac {\log (x)}{-400+x \log ^2(x)}-\frac {\log (x)}{(1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx-2 \int \left (-\frac {\log (x)}{-400+x \log ^2(x)}+\frac {x \log (x)}{-400+x \log ^2(x)}+\frac {\log (x)}{(1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx-400 \int \frac {1}{400-x \log ^2(x)} \, dx+400 \int \left (-\frac {2}{-400+x \log ^2(x)}+\frac {2 x}{-400+x \log ^2(x)}-\frac {3}{(1+x) \left (-400+x \log ^2(x)\right )}\right ) \, dx-800 \int \frac {x}{-400+x \log ^2(x)} \, dx+1200 \int \frac {1}{(1+x) \left (-400+x \log ^2(x)\right )} \, dx+\int \left (-2+2 x-\frac {3}{1+x}\right ) \, dx-\int \log \left (-x+\frac {400}{\log ^2(x)}\right ) \, dx\\ &=-2 x+x^2-3 \log (1+x)+2 \int \frac {1}{(1+x) \log (x)} \, dx+2 \int \frac {x}{(1+x) \log (x)} \, dx-2 \int \frac {x \log (x)}{-400+x \log ^2(x)} \, dx-400 \int \frac {1}{400-x \log ^2(x)} \, dx-800 \int \frac {1}{-400+x \log ^2(x)} \, dx-\int \log \left (-x+\frac {400}{\log ^2(x)}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 1.04 \begin {gather*} -x+x^2-3 \log (1+x)-x \log \left (-x+\frac {400}{\log ^2(x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 31, normalized size = 1.19 \begin {gather*} x^{2} - x \log \left (-\frac {x \log \relax (x)^{2} - 400}{\log \relax (x)^{2}}\right ) - x - 3 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 33, normalized size = 1.27 \begin {gather*} x^{2} - x \log \left (-x \log \relax (x)^{2} + 400\right ) + x \log \left (\log \relax (x)^{2}\right ) - x - 3 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 247, normalized size = 9.50
method | result | size |
risch | \(-x \ln \left (x \ln \relax (x )^{2}-400\right )+2 x \ln \left (\ln \relax (x )\right )+i \pi x \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )^{2}-400\right )}{\ln \relax (x )^{2}}\right )^{2}-\frac {i \pi x \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )}{2}-i \pi x +i \pi x \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x \ln \relax (x )^{2}-400\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )^{2}-400\right )}{\ln \relax (x )^{2}}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )^{2}-400\right )}{\ln \relax (x )^{2}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )^{2}-400\right )}{\ln \relax (x )^{2}}\right )^{3}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x \ln \relax (x )^{2}-400\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )^{2}-400\right )}{\ln \relax (x )^{2}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}}{2}+x^{2}-x -3 \ln \left (x +1\right )\) | \(247\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 32, normalized size = 1.23 \begin {gather*} x^{2} - x \log \left (-x \log \relax (x)^{2} + 400\right ) + 2 \, x \log \left (\log \relax (x)\right ) - x - 3 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.35, size = 31, normalized size = 1.19 \begin {gather*} x^2-3\,\ln \left (x+1\right )-x\,\ln \left (-\frac {x\,{\ln \relax (x)}^2-400}{{\ln \relax (x)}^2}\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 27, normalized size = 1.04 \begin {gather*} x^{2} - x \log {\left (\frac {- x \log {\relax (x )}^{2} + 400}{\log {\relax (x )}^{2}} \right )} - x - 3 \log {\left (x + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________