Optimal. Leaf size=25 \[ 1+x+\left (-x+\frac {1}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+\left (7 x^2+6 x^3\right ) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{x^3+3 x^2 \log \left (\frac {3 e^{x+x^2}}{4}\right )+3 x \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+\log ^3\left (\frac {3 e^{x+x^2}}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-4 x+2 x^2+5 x^3+2 x^4+x^2 (7+6 x) \log \left (\frac {3 e^{x+x^2}}{4}\right )+\left (-2+3 x+6 x^2\right ) \log ^2\left (\frac {3 e^{x+x^2}}{4}\right )+(1+2 x) \log ^3\left (\frac {3 e^{x+x^2}}{4}\right )}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^3} \, dx\\ &=\int \left (1+2 x-\frac {4 (1+x)}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^3}+\frac {4 x (1+x)}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}-\frac {2}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )}\right ) \, dx\\ &=x+x^2-2 \int \frac {1}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )} \, dx-4 \int \frac {1+x}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^3} \, dx+4 \int \frac {x (1+x)}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2} \, dx\\ &=x+x^2+\frac {1}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}-2 \int \frac {1}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )} \, dx+4 \int \left (\frac {x}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}+\frac {x^2}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}\right ) \, dx\\ &=x+x^2+\frac {1}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}-2 \int \frac {1}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )} \, dx+4 \int \frac {x}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2} \, dx+4 \int \frac {x^2}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 40, normalized size = 1.60 \begin {gather*} x+x^2+\frac {1}{\left (x+\log \left (\frac {3 e^{x+x^2}}{4}\right )\right )^2}-\frac {2 x}{x+\log \left (\frac {3 e^{x+x^2}}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 88, normalized size = 3.52 \begin {gather*} \frac {x^{6} + 5 \, x^{5} + 8 \, x^{4} + 2 \, x^{3} + {\left (x^{2} + x\right )} \log \left (\frac {3}{4}\right )^{2} - 4 \, x^{2} + 2 \, {\left (x^{4} + 3 \, x^{3} + 2 \, x^{2} - x\right )} \log \left (\frac {3}{4}\right ) + 1}{x^{4} + 4 \, x^{3} + 4 \, x^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} \log \left (\frac {3}{4}\right ) + \log \left (\frac {3}{4}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 44, normalized size = 1.76 \begin {gather*} x^{2} + x - \frac {2 \, x^{3} + 4 \, x^{2} + 2 \, x \log \relax (3) - 4 \, x \log \relax (2) - 1}{{\left (x^{2} + 2 \, x + \log \relax (3) - 2 \, \log \relax (2)\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.60, size = 54, normalized size = 2.16
method | result | size |
default | \(x^{2}+x +\frac {-2 x^{3}-4 x^{2}-2 x \left (\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )-x^{2}-x \right )+1}{\left (\ln \left (\frac {3 \,{\mathrm e}^{x} {\mathrm e}^{x^{2}}}{4}\right )+x \right )^{2}}\) | \(54\) |
risch | \(x^{2}+x -\frac {4 i \left (-i+\pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )-\pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{2}-\pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{2}+\pi x \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{3}+2 i \ln \relax (3) x -4 i x \ln \relax (2)+2 i x^{2}+2 i x \ln \left ({\mathrm e}^{x}\right )+2 i x \ln \left ({\mathrm e}^{x^{2}}\right )\right )}{\left (\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right )^{3}+2 i \ln \relax (3)-4 i \ln \relax (2)+2 i x +2 i \ln \left ({\mathrm e}^{x}\right )+2 i \ln \left ({\mathrm e}^{x^{2}}\right )\right )^{2}}\) | \(249\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 35, normalized size = 1.40 \begin {gather*} x-\frac {2\,x^3+4\,x^2+2\,\ln \left (\frac {3}{4}\right )\,x-1}{{\left (x^2+2\,x+\ln \left (\frac {3}{4}\right )\right )}^2}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.24, size = 83, normalized size = 3.32 \begin {gather*} x^{2} + x + \frac {- 2 x^{3} - 4 x^{2} + x \left (- 2 \log {\relax (3 )} + 4 \log {\relax (2 )}\right ) + 1}{x^{4} + 4 x^{3} + x^{2} \left (- 4 \log {\relax (2 )} + 2 \log {\relax (3 )} + 4\right ) + x \left (- 8 \log {\relax (2 )} + 4 \log {\relax (3 )}\right ) - 4 \log {\relax (2 )} \log {\relax (3 )} + \log {\relax (3 )}^{2} + 4 \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________